The mpssespi Package

The mpssespi Package

A Tcl Interface to the FTDI MSPPE SPI Library

The mpssespi Package

Copyright © 2014 G. Andrew Mangogna

Legal Notice and Other Information

This software is copyrighted 2014 by G. Andrew Mangogna. The following terms apply to all files associated with the software
unless explicitly disclaimed in individual files.

The author hereby grants permission to use, copy, modify, distribute, and license this software and its documentation for any
purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any
distributions. No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, provided that the new terms
are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIB-
UTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause
52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c)
(1) of DFARSs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission
to use and distribute the software in accordance with the terms specified in this license.

NOTICE OF FUTURE TECHNOLOGY DEVICES INTERNATIONAL LIMITED SOFTWARE

This software is linked against libraries provided by Future Technology Devices International Limited. The following is from the
http://www.ftdichip.com/Drivers/D2XX.htm page of their web site.

This software is provided by Future Technology Devices International Limited ““as is” and any express or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In
no event shall future technology devices international limited be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

FTDI drivers may be used only in conjunction with products based on FTDI parts. FTDI drivers may be distributed in any form
as long as license information is not modified. If a custom vendor ID and/or product ID or description string are used, it is the
responsibility of the product manufacturer to maintain any changes and subsequent WHQL re-certification as a result of making
these changes.

The mpssespi Package

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME
1.0b1 April 20, 2014 Initial release. GAM
1.0 May 22, 2014 Official release of version 1.0. GAM

The mpssespi Package iv
Contents
Introduction 1
Design ConCepts o v i i i e e e e 1
Package Interface Considerations oL e e e e e 1
Package Data 2
Package Commands 6
Get Number of Channels e e e e e e e e e 6
GetChannel Info L L e e e e e e 7
OpenChannel e 11
Init Channel e e e e e e e e 12
Get Channel Configuration L e e e e 14
Set Channel Configuration L e e e e e 20
Close Channel e e e 28
Read Channel e e 30
Write Channel e e e 34
Read/Write Channel e e e e e e e e 38
ISBuUsy . . . e 40
Change CS e 42
Write GPIO 43
Read GPIO e 45
Error Handling 47
Package Initialization 48
Load Initialization L e e e e 48
Creating the Package Namespace 0 i e e e e e 49
Unloading o o e e e e e 49
Safe Interpreter Initialization L L e e e e e 49
Package Configuration L e e e e e e e 50
Source Organization 50
Package Source 50
TeSt SOUICE o o e e e e e e e e e e e e 52
Example 54
Special Linux Considerations 57
Known Problems 58
Building the Package 58
Index 59

The mpssespi Package

List of Figures

1 Interface Layers e e e e e e e

Abstract

This document is a literate program for the mpssespi Tcl package. As a literate program it contains both a discussion of the
details of the package as well as the implementation source code. The mpssespi package provides a Tcl interface to the FTDI
libMPSSE-SPI library. This library is used to interface FTDI USB to serial converter chips to SPI bus peripheral components
allowing the peripherals to be controlled across a USB interface.

The mpssespi Package 1/59

Introduction

Future Technology Devices International, Ltd. ® (FTDI) produces a series of USB to serial converter chips that are popular for
interfacing a variety of systems across a USB bus. FDTI provides the necessary software drivers to interface to their chips. One of
the features of FTDI converter chips is a Multi-Protocol Synchronous Serial Engine (MPSSE) that can be used to drive a variety
of synchronous serial protocol interfaces. One of those interfaces that the MPSSE can operate is a SPI bus. By appropriately
connecting the FTDI chip pins to a SPI bus peripheral, it is possible to control SPI devices directly from a desktop computer
across a USB connection.

To facilitate this, FTDI provides the 1ibMPSSE-SPT library. It operates in conjunction with the D2XX library (also provided
by FTDI) to provide a direct SPI oriented programing interface.

This document describes a Tcl interface to the 1 ibMPSSE-SPT library. This interface consists, primarily, of “C” code to adapt
the calling conventions of 11bMPSSE~-SPT to the internal structures of Tcl.

This document is also a literate program. The “C” source code for the Tcl package is also included in the text. The documentation
is generated using asciidoc. The source code can be extracted using atangle. The entire set of source files is available from the
Tcl-CM3 website.

Readers who may not be practiced at reading literate programs may find it disconcerting that the order is not that required by the
compiler. Rather, the order of presentation is chosen to facilitate understanding of the program concepts. Tooling is then used to
rearrange groups of programming language statements, known as chunks, into the order required by the compiler. Rest assured
that the required ordering of the program language statements happens correctly as you otherwise could not build the program.
In brief, try not to approach reading this document in quite the same way as you might read source code.

Design Concepts

The figure below shows the layering of the software.

Tcl Application

mpssespi Tcl Package

libMPSSE-SPI Library!

. D2XX Driver |

Figure 1: Interface Layers

A Tcl application uses the mpssespi package. That package provides an interface to the 1 ibMP SSE-SP1T library. This library
is provided by FTDI and operates on top of the D2XX driver also provided by FTDI. The default build process of the package
staticly links 1ibMPSSE-SPT to the Tcl package code so that only the D2XX driver must be properly installed on the host
system.

Package Interface Considerations

Because the 11bMPSSE~-SPT functional interface is oriented to reading and writing data, it might seem natural to design the Tcl
interface as a Tcl channel driver. For example, the £dt 2chan package provides such an interface to the D2xx driver. However,
a SPI bus has the ability to tranfer data both out and in at the same time and many SPI device operations depend upon that

http://www.ftdichip.com
http://en.wikipedia.org/wiki/Literate_programming
http://www.methods.co.nz/asciidoc/
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/
http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3/
http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3/

The mpssespi Package 2/59

characteristic of the SPI bus. Reading and writing simultaneously does not fit the semantics of a Tcl file channel. Further, it is
possible to interface multiple SPI peripherals to the same FTDI USB to serial converter chip and channel semantics would be
further strained to support that concept. So this package provides a rather more direct interface to 11 bMPSSE~-SPT functions.

The names of the commands provided by the mpssespi package were chosen to match those of the “C” functions provided
by the library. However, the commands do not copy the signature of the library functions exactly. Some of the library functions
require configuration data be passed at each invocation. This is tedious, especially considering that much of the configuration
information does not change for a given hardware arrangement. Consequently, this package provides a means of storing the
necessary configuration information as a set of defaults and commands will use that configuration information where required
by the underlying 1 ibMPSSE-SPT functions. Commands are provided to specify and examine the configuration information in
keeping with the usual conventions of Tcl packages for introspection.

In the next section we discuss the data that the mpssespi package stores. That is followed by the commands the package
provides.

Package Data

This package is written in the thread neutral style, i.e. this package may be loaded into multiple interpreters simultaneously.
Since the FTDI library calls use blocking I/O, some applications may find it necessary to perform the I/O in a separate thread to
prevent blocking other activities within the application. Although one would anticipate the I/O blocking time to be very small for
SPI bus devices!, the ability to use threads or separate interpreters is still useful and requires little additional code to implement.
To accomplish thread neutrality, package data is held in memory that is associated with the interpreter and not as static “C”
variables. Tcl provides facilities just for this purpose.

The structure of the package information is given below.

<<type definitions>>=
typedef struct MPSSEPkgInfo {
Tcl_HashTable handleMap ; /x @ x/
unsigned counter ; /x @ «/
} MPSSEPkgInfo ;

(1] 1ibMPSSE-SPI uses a handle of its own composition to reference open SPI channels. We will compose strings to
represent those handles and use a hash table to map our composed string names to 11bMP SSE—-SP I handles.

(2] To compose a package handle name we use a fixed string, mpssespi, with an integer number to insure it is unique. This
member holds the value of a counter used to derive the unique number for the package handle name.

We need functions to create and delete the package information data.

<<utility functions>>=

static ClientData

NewMPSSEPkgInfo (
Tcl_Interp xinterp)

MPSSEPkgInfo *info ;

info = (MPSSEPkgInfo =*)ckalloc(sizeof (xinfo)) ;

memset (info, 0, sizeof (xinfo)) ;

Tcl_TInitHashTable (&§info->handleMap, TCL_STRING_KEYS) ; /x @ x/
Tcl_SetAssocData (interp, PACKAGE_NAME, DeleteMPSSEPkgInfo, info) ;/x @ x/

return (ClientData)info ;

! Recall that the SPI bus is clocked synchronously and its operation does not really depend upon the peripheral device even being present. Consequently, the
1/O time is simply the time associated with the number of bits clocked onto and off of the SPI bus.

http://www.ftdichip.com/Support/Documents/AppNotes/AN_178_User%20Guide%20for%20LibMPSSE-SPI.pdf

The mpssespi Package 3/59

o The hash table facilities of Tcl provide the required functionality to map a string to an arbitary piece of data.

(2] The allocated data structure is associated with the interpeter by this function.

When the interpreter is deleted, then DeleteMPSSEPkgInfo () isinvoked. This function is shown below.

<<forward utility functions>>=
static void
DeleteMPSSEPkgInfo (
ClientData clientData,
Tcl_Interp xinterp)

MPSSEPkgInfo *info ;
Tcl_HashEntry =*entry ;
Tcl_HashSearch searchContext ;

info = (MPSSEPkgInfo x)clientData ;

for (entry = Tcl_FirstHashEntry (&info->handleMap, &searchContext) ; /+ @ «/
entry ; entry = Tcl_NextHashEntry (&searchContext)) {
MPSSEChanConfig xconfig = (MPSSEChanConfig x)Tcl_GetHashValue (entry) ;
ckfree ((char x)config) ;

}
Tcl_DeleteHashTable (&info->handleMap) ; /* 0 ./

ckfree ((char *)info) ; /+ @ «/

o The entries in the hash table are themselves dynamically allocated and so must be freed. Here we iterate through all the
hash table entries.

(2] We recover the memory for the hash table itself.
o Finally, the memory for the package information is recovered.
In addition to mapping our own resource names to 1 ibMPSSE-SPT handles, each open SPI channel has some configuration

information. We bundle all of that up into a MPSSEChanConfig structure and it is a pointer to this type of object that is the
hash table entry. So our resource names actually map to quite a bit of information.

<<type definitions>>=
typedef struct MPSSSEChanInfo {

FT_HANDLE handle ; /x> @ x/
bool isInitialized ; /x O x/
ChannelConfig config ; /x © %/
uint32 transferOptions ; /x @ x/

} MPSSEChanConfig ;

(1] handle is the handle that 1 ibMP SSE—-SPI returns when a SPI channel is opened.

(2] isInitialized keeps track of whether the channel is initialized. Invoking the initChannel command must pre-
ceed some other commands.

(3] config is the channel configuration used by 1ibMPSSE-SPTI.

o transferOptions are the default options used during read and writes if the caller does not specify any.

As is conventional in Tcl, resources outside of the interpreter are represented as simple strings (e.g. file channels) and extension
commands then map these arbitrary strings into the extension specific resource information they represent. In the mpssespi
package, the open SPI channels of 1ibMPSSE—-SPI are represented by strings of the form mpssespi<number>, where
<number> is replaced by one or more decimal digits. The NewHandleMapping () function below creates these handles and
sets up the hash table for mapping the handle string names to the channel information.

The mpssespi Package 4/59

<<utility functions>>=

static Tcl_Obj =

NewHandleMapping (
MPSSEPkgInfo xinfo,
FT_HANDLE handle)

Tcl_Obj xhandleName ;
Tcl_HashEntry =xentry ;

int isNewEntry ;
MPSSEChanConfig xchanConfig ;

handleName = Tcl_ObjPrintf ("mpssespi%u", info->counter++) ; /x 0 ./

entry = Tcl_CreateHashEntry (&info->handleMap, Tcl_GetString(handleName),
&isNewEntry) ; /+ @ x/
assert (isNewEntry != 0) ; /x © x/

if (isNewEntry) {
chanConfig = (MPSSEChanConfig «)ckalloc(sizeof (xchanConfig)) ;/* 0 ./
chanConfig->handle = handle ;
chanConfig->isInitialized = 0 ;
chanConfig->config.ClockRate = DEFAULT_CHANNEL_CONFIG_ClockRate ;
chanConfig->config.LatencyTimer = DEFAULT_CHANNEL_CONFIG_LatencyTimer ;
chanConfig->config.configOptions =

DEFAULT_CHANNEL_CONFIG_configOptions ;

chanConfig->config.Pin = DEFAULT_CHANNEL_CONFIG_Pin ;
chanConfig->transferOptions = DEFAULT_TRANSFER_OPTIONS ;
Tcl_SetHashValue (entry, (ClientData)chanConfig) ;

} else {
Tcl _Panic("failed to create mpssespi channel handle entry, \"$s\"\n",

Tcl_GetString (handleName)) ;

return handleName ;

o Create the handle in an Tcl object.

2] Create the entry in the hash table.

(2] Since we are making the hash table keys unique with a counter, we should always create new entries or else something if
very wrong. However, we must also account for the fact that assertions go away at release time and Tcl_Panic () is
used for that purpose.

o Allocate memory for the channel configuration information and fill in some default values.

Below are the default values of the channel information. Most of the constants are from the 1 ibMPSSE—-SP I header file.

<<macro definitions>>=

#define DEFAULT_CHANNEL_CONFIG_ClockRate 1000000

#define DEFAULT_CHANNEL_CONFIG_LatencyTimer 2

#define DEFAULT_CHANNEL_CONFIG_configOptions \
(SPI_CONFIG_OPTION_MODEO |\
SPI_CONFIG_OPTION_CS_DBUS3 |\
SPI_CONFIG_OPTION_CS_ACTIVELOW)

#define DEFAULT_CHANNEL_CONFIG_Pin 0

The default channel configuration values chosen are somewhat arbitrary. The clock rate of 1 MHz is not uncommon for SPI
peripherals although many are capable of much faster clock rates. The latency timer value was chosen to work with both older
and newer FTDI devices. Mode 0 and active low chip selects are also quite common. It is hard to guess which hardware line is
connected to the chip select of the SPI bus peripheral chip. Here we have chosen the first pin available.

The mpssespi Package 5/59

<<macro definitions>>=

#define DEFAULT_TRANSFER_OPTIONS \
(SPI_TRANSFER_OPTIONS_SIZE_IN_BYTES |\
SPI_TRANSFER_OPTIONS_CHIPSELECT_ENABLE |\
SPI_TRANSFER_OPTIONS_CHIPSELECT_DISABLE)

Transfer options can be specified on a per read or write operation basis. To avoid some tedium, we save off default values that
will be used if the transfer options are not specified. Again we have chosen values to match the common configuration, of byte
oriented interfaces where chip select should be enabled at the beginning of the bus transaction and disabled at the end. The
default transfer options can be overidden on a per transaction basis for those SPI bus protocols that have different bus protocols.
We will see how transfer options are specified below.

Of course if you create something, then you must be prepared to delete it. Resources for channel information are returned by
DeleteHandleMapping () function which is shown below.

<<utility functions>>=

static void

DeleteHandleMapping (
MPSSEPkgInfo xinfo,
Tcl_Obj xhandleName)

Tcl_HashEntry =*entry ;
MPSSEChanConfig xchanConfig ;

entry = Tcl_FindHashEntry (&info->handleMap, Tcl_GetString(handleName)) ;

assert (entry != NULL) ;
if (entry) {
chanConfig = (MPSSEChanConfig *)Tcl_GetHashValue (entry) ;

ckfree ((char x)chanConfig) ;
Tcl_DeleteHashEntry (entry) ;

Finally, we need a function to map our “made-up” channel names into the channel information. That work is done by LookUpH
andle ().

<<utility functions>>=

static int

LookUpHandle (
Tcl_Interp xinterp,
MPSSEPkgInfo xinfo,
Tcl_Obj xhandleName,
MPSSEChanConfig xxchanConfigPtr)

Tcl_HashEntry xentry ;

entry = Tcl_FindHashEntry (&info->handleMap, Tcl_GetString(handleName)) ;
if (entry) {
if (chanConfigPtr) { /+ @ «/
*chanConfigPtr = (MPSSEChanConfig x)Tcl_GetHashValue (entry) ;
}
return TCL_OK ;
} else {
Tcl_SetObjResult (interp, Tcl_ObjPrintf ("unknown channel handle, \"%s\"",
Tcl_GetString(handleName))) ;
return TCL_ERROR ;

The mpssespi Package 6/59

o We do allow for a NULL value of the chanConfigPtr parameter. This allows a lookup just to verify the channel name.
However, this is not a feature of the function used in the package.

Package Commands

With all the preliminaries out of the way, we now turn our attention to the package commands themself. The commands and their
names were chose to map directly to the “C” functions provided by 11bMPSSE—-SPI. The commands are not a rofe mapping as
we have discussed, particularly in handling configuration information.

Get Number of Channels

One of the first things that an application should determine is the the number of attached FTDI SPI channels. Until a channel
is actually open, 1ibMPSSE-SPT references them via indices. Those indices start at 0 and run up to the number of attached
channels minus one (i.e. in traditional “C” array indexing style). The get NumChannels command is a direct invocation of the
SPI_GetNumChannels () library function.

::mpssespi getNumChannels

The command returns an integer value that is the the number of SPI channels available.

This is usually the first command that an application would invoke. It is necessary to determine the valid range of channel indices.
Note that if there are multiple channels attached, this call still does not tell you enough information to determine to which channel
the peripheral is attached. All you can determine here by this command is the total number of attached channels.

<<command procedures>>=
static int
GetNumChannelsProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj *const objvI[])

int result = TCL_OK ;
FT_STATUS status ;
uint32 numChannels = 0 ;

if (objc > 1) {
Tcl_WrongNumArgs (interp, 1, objv, "")
return TCL_ERROR ;

ifdef TEST /x @ «/
status = 0 ;
numChannels = 1 ;
else
status = SPI_GetNumChannels (&numChannels) ;
endif /* TEST =/
result = SetStatusResult (interp, status) ; /x @ «/
if (result == TCL_OK) {
Tcl_SetObjResult (interp, Tcl_NewLongObj (numChannels)) ;
}

return result ;

<<static data>>=
static char const getNumChannelsCmdName[] = "::mpssespi::getNumChannels"
static char const getNumChannelsName[] = "getNumChannels"

The mpssespi Package 7159

<<command creation>>=
Tcl_CreateObjCommand (interp, getNumChannelsCmdName, GetNumChannelsProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, getNumChannelsName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (getNumChannelsName, -1),
Tcl_NewStringObij (getNumChannelsCmdName, -1)) != TCL_OK) {
goto errorout ;

o Support for testing the package code without a FTDI device installed.

2] Translating 1 ibMPSSE-SPT returned status values to meaningful Tcl interpreter results is accomplished in one place
below.

We will follow the pattern established above for the commands. First we present the source code to the command followed
by the statements to create the command. For this package, we export all the commands and will then create a namespace
ensemble command that has the same name as the namespace where the commands reside. We will also supply an ensemble
mapping dictionary. The intent of all of this is to allow the ensemble of the package to be extended at the script level.

We will also establish a pattern of including tcltest test code along with the package implementation. Testing an attached
peripheral device poses special challenges. We must make assumptions about what is connected. Replicating the testing environ-
ment may be difficult for others. So to overcome some of these difficulties, we define a conditional compilation symbol, TEST.
If this symbol is defined to the preprocessor, the actual calls to the 11 bMPSSE~-SPT library are replaced by stubbed out results.
This allows testing of the other logic without having an actual FTDI device in place.

<<getNumChannels tests>>=
test getNumChannels-1.0 {
getNumChannels test

} —setup {
} —cleanup {
} -body {

::mpssespi getNumChannels
} —result {1}

Get Channel Info

Given a channel index number, the get ChannelInfo command returns some information about the channel. The getChan
nelInfo command is a direct invocation of the SPI_GetChannelInfo () library function.

The mpssespi Package 8/59

::mpssespi getChannelInfo ?chanindex?

chanindex
A 1ibMPSSE-SPT channel index. This is an integer value between 0 and the number of channels returned by the

getNumChannels command minus 1. If the chanindex argument is missing, then it is assumed to have the value
of 0.

The command returns a dictionary containing the channel information. The keys of the dictionary and the meaning of the
corresponding value are:

opened
A boolean value indicating if the channel is open

hispeed
A boolean value indicating whether the channel is a high speed channel.

type
An numeric value representing the device type.

idvendor
A numeric value representing the device vendor identifier.

idproduct
A numeric value representing the device product identifier.

locid
A numeric value representing the location identifier.

serialnumber
A string value giving the serial number of the channel.

description
A string value giving a description of the channel.

The information given by this command can be used to determine which SPI channel is connected to a particular peripheral. By
some experimentation of hot plugging and unplugging the FTDI converter, you should be able to determine the serial number or
location ID of the channel attached to your peripheral. The details of this are, of course, specific to your hardware arrangement
but once determined it is a simple script to search the channel information of all the attached SPI channels for the one connected
to your peripheral. It is also quite common to have only a single FTDI converter attached. In this case, finding the correct channel
is trivial. The reason all this is necessary is that we must know the index of the channel we wish to open and those indices are
not predetermined.

<<command procedures>>=
static int
GetChannelInfoProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj xconst objv[])

int result ;

uint32 chanIndex ;
FT_DEVICE_LIST_INFO_NODE devicelInfo ;
FT_STATUS status ;

Tcl_Obj xinfoObj ;

/x @ x/
if (objc == 1) {
chanIndex = 0 ;

} else if (objc == 2) {

The mpssespi Package 9/59

int chanIndexObjValue ;

if (Tcl_GetIntFromObj (interp, objv([l], &chanIndexObjValue) != TCL_OK) {
return TCL_ERROR ;
}
chanIndex = chanIndexObjValue ;
} else {
Tcl_WrongNumArgs (interp, 1, objv, "?channel?")
return TCL_ERROR ;

/x @ x/
ifdef TEST
(void) chanIndex ;
status = 0 ;
deviceInfo.Flags = 0 ;
deviceInfo.Type = 0x41 ;
deviceInfo.ID = 0x42 ;
deviceInfo.LocId = 0x43 ;
strcpy (deviceInfo.SerialNumber, "001")
strcpy (deviceInfo.Description, "This is a test")
deviceInfo.ftHandle = (void *)0xfffffe ;
else
status = SPI_GetChannelInfo (chanIndex, &deviceInfo) ;
endif /x TEST =x/
result = SetStatusResult (interp, status) ;

/+ @ «/
if (result == TCL_OK) {
infoObj = Tcl_NewDictObj() ;

result = Tcl_DictObjPut (interp, infoObj,
Tcl_NewStringObj ("opened", -1),

Tcl_NewBooleanObj ((deviceInfo.Flags & FT_FLAGS_OPENED) != 0)) ;
if (result != TCL_OK) {
goto errout ; /x @ %/

result = Tcl_DictObjPut (interp, infoObj,
Tcl_NewStringObj ("hispeed", -1),
Tcl_NewBooleanObj ((deviceInfo.Flags & FT_FLAGS_HISPEED) != 0)) ;
if (result != TCL_OK) {
goto errout ;

result = Tcl_DictObjPut (interp, infoObj,
Tcl_NewStringObj ("type", -1), Tcl_NewIntObj(deviceInfo.Type)) ;
if (result != TCL_OK) {
goto errout ;

result = Tcl_DictObjPut (interp, infoObj, /x @ %/
Tcl_NewStringObj ("idvendor", -1),
Tcl_NewLongObj (EXTRACT_BITFIELD (deviceInfo.ID, 16, 16))) ;
if (result != TCL_OK) {
goto errout ;

result = Tcl_DictObjPut (interp, infoObj,

Tcl_NewStringObj ("idproduct", -1),

Tcl_NewLongObj (EXTRACT_BITFIELD (deviceInfo.ID, 0, 16))) ;
if (result != TCL_OK) {

The mpssespi Package 10/59

goto errout ;

result = Tcl_DictObjPut (interp, infoObj,
Tcl_NewStringObj ("locid", -1), Tcl_NewIntObj(deviceInfo.LocId)) ;
if (result != TCL_OK) {
goto errout ;

result = Tcl_DictObjPut (interp, infoObj,
Tcl_NewStringObj ("serialnumber", -1),
Tcl_NewStringObj (deviceInfo.SerialNumber, -1)) ;
if (result != TCL_OK) {
goto errout ;

result = Tcl_DictObjPut (interp, infoObj,
Tcl_NewStringObj ("description", -1),
Tcl_NewStringObj(deviceInfo.Description, -1)) ;
if (result != TCL_OK) {
goto errout ;

Tcl_SetObjResult (interp, infoObj) ;

return result ;

errout:
Tcl_DecrRefCount (infoObj) ;
return TCL_ERROR ;

<<static data>>=
static char const getChannelInfoCmdName[] = "::mpssespi::getChannelInfo"
static char const getChannelInfoName[] = "getChannelInfo"

<<command creation>>=
Tcl_CreateObjCommand (interp, getChannelInfoCmdName, GetChannelInfoProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, getChannelInfoName, 0) != TCL_OK) {
goto errorout ;

}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj(getChannelInfoName, -1),

Tcl_NewStringObij (getChannelInfoCmdName, -1)) != TCL_OK) {
goto errorout ;

Argument parsing and processing.
Invoke SPI_GetChannelInfo ().

Convert the returned values into a Tcl dictionary.

e 0 0 ©

Okay, for all you goto whiners out there. Yes, there will be gotos in the code. But note, they always jump forward in
the code (never backward as that is truly just wrong) and they are used to handle error exceptions which is not a language
concept that “C” supports. And yes, the code could have been constructed as some deeply nested i f, then construct or
divided into tiny functions or some other equally contrived construct. But when you have long sequences of calls as we
do here, the got o avoids the strain of dealing with an excessive nesting depth or the lexical distance that small functions
impose. So get over it! No doubt that you will also find other conventions of my coding style that seem quirky to you (e.g.
adding spaces around the ; statement terminator). I can suggest the indent program for you.

The mpssespi Package 11/59

(5] We divide up the returned id into its vendor and product portions.

The code for this command also follows a pattern that we will see again. Since the underlying libary call simply produces
information, most of the code is devoted to converting that information from the form it is returned by the library to Tcl objects
which are gathered into a dictionary.

<<getChannelInfo tests>>=

test getChannelInfo-1.0 ({
getChannelInfo test

} —-setup {

} —cleanup {

} —-body {
set info [::mpssespi getChannelInfo 0]
dict get $info opened

} —result {0}

Open Channel

The first step in being able to use a 11bMPSSE-SPI channel for SPI control is to open it. Opening the channel associates
a handle to a channel index and prepares the channel for subsequent operations. The openChannel command invokes the
SPI_OpenChannel () function.

::mpssespi openChannel ’chanindex?

chanindex
A 1ibMPSSE-SPTI channel index. This is an integer value between 0 and the number of channels returned by the

getNumChannels command minus 1. If the chanindex argument is missing, then it is assumed to have the value
of 0.

The openChannel command opens a SPI channel and returns a channel handle that is to be passed as an argument to
other mpssespi package commands that operate on SPI channels. The returned handle is a string, but its value is only
meaningful to the mpssespi package and its form should not be relied upon by the caller. However, the caller may
assume that the returned string is unique among all open SPI bus channels (i.e. the returned handle is suitable to use as a
Tcl array index).

<<command procedures>>=
static int
OpenChannelProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj *const objvI[])

uint32 chanIndex ;
FT_STATUS status ;
FT_HANDLE handle ;
int result ;

if (objc == 1) {
chanIndex = 0 ;
} else if (objc == 2) {

int chanIndexObjValue ;

if (Tcl_GetIntFromObij (interp, objv([l], &chanIndexObjValue) != TCL_OK) {
return TCL_ERROR ;
}
chanIndex = chanIndexObjValue ;
} else {

The mpssespi Package

12 /59

Tcl_WrongNumArgs (interp, 1, objv, "?channel?")
return TCL_ERROR ;

ifdef TEST

(void) chanIndex ;

status = 0 ;

handle = (void *)0xfffffe ;
else

status = SPI_OpenChannel (chanIndex, &handle) ;
endif /* TEST =x/

result = SetStatusResult (interp, status) ;

if (result == TCL_OK) {
Tcl_Obj xhandleName = NewHandleMapping ((MPSSEPkgInfo *)clientData,
handle) ; /x @ «/
Tcl_SetObjResult (interp, handleName) ;

return result ;

<<static data>>=
static char const openChannelCmdName[] = "::mpssespi::openChannel"
static char const openChannelName[] = "openChannel"

<<command creation>>=
Tcl_CreateObjCommand (interp, openChannelCmdName, OpenChannelProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, openChannelName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (openChannelName, -1),
Tcl_NewStringObj (openChannelCmdName, -1)) != TCL_OK) {
goto errorout ;

o We finally see a channel information function invocation. Note that the c1ientData argument to the command function
is being cast to a pointer to a mpssespi package specific object. The command creation code arranges for that value to
be passed to each of the commands in the package. We will see how that happens below, but for now simply understand
that some package associated data was allocated and is made available to the package commands via the clientData

argument.

<<openChannel tests>>=
test openChannel-1.0 {
openChannel test
} —setup {
} —cleanup {
::mpssespi closeChannel $handle
} —body {
set handle [::mpssespi openChannel 0]
} —result {mpssex} —-match glob

Init Channel

The second step to using a SPI channel is to initialize a previously opened channel. It turns out that 11 bMPSSE—-SP I separates
the operations of opening a channel and initializing that channel into separate functions. This separation adds an extra command
to the set up but does allow for channels to be re-initialized without being closed. The main function of SPI_InitChannel ()

The mpssespi Package 13/59

seems to be to set up the configuration for the channel. It turns out that there are alot of configuration options for a SPI channel.
So we have created some configuration commands to deal with reading and updating the channel configuration.

So after opening a channel it is necessary to initialize it. If you wish to change the configuration used for the initialization, then
you can set different configuration values before invoking the initChannel command. Otherwise, you end up with the default
configuration.

::mpssespi initChannel ?handle?

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

The initChannel command initializes an open SPI channel. Configuration information associated with the channel is
used for the initialization. The command returns the empty string.

<<command procedures>>=
static int
InitChannelProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj *const objvI[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
Tcl_Obj xhandleObj ;

MPSSEChanConfig xchanConfig ;

FT_STATUS status ;

int result ;

if (objc == 2) {
handleObj = objv[1l] ;
} else {

Tcl_WrongNumArgs (interp, 1, objv, "channelHandle") ;
return TCL_ERROR ;

/% @x/
if (LookUpHandle (interp, pkgInfo, handleObj, &chanConfig) != TCL_OK) {
return TCL_ERROR ;

ifdef TEST
status = 0 ;
else

status = SPI_InitChannel (chanConfig->handle, &chanConfig->config) ; /x @ x/
endif /x TEST =x/

result = SetStatusResult (interp, status) ;
if (result == TCL_OK) {
chanConfig->isInitialized = 1 ; /x © x/

Tcl_ResetResult (interp) ;

return result ;

<<static data>>=
static char const initChannelCmdName[] = "::mpssespi::initChannel"
static char const initChannelName[] = "initChannel"

<<command creation>>=
Tcl_CreateObjCommand (interp, initChannelCmdName, InitChannelProc,
clientData, NULL) ;

The mpssespi Package 14 /59

if (Tcl_Export (interp, ns, initChannelName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj(initChannelName, -1),
Tcl_NewStringObj (initChannelCmdName, -1)) != TCL_OK) {
goto errorout ;

] Here we see how the package information (as passed via the clientData argument) is used to map the channel handle
back to information that is needed to invoke 1ibMPSSE-SPI functions. We will see this pattern often in the other
commands.

(2] Note that initializing the channel does not use all of the configuration information that we are holding. Only that part

directly pertaining to the channel is handled by initialization. The transfer options are used on a per SPI bus transaction
basis and we will see them used later.

(3] We now mark the channel as initialized. The reason for tracking the initialization is that some functions on an open channel
will “hang” if they are invoked before the channel is initialized. Tracking the state just prevents small programmer errors
from becoming a major inconvenience.

<<initChannel tests>>=
test initChannel-1.0 {
initialize an open channel
} —setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespi closeChannel S$handle
} —body {
::mpssespl initChannel $handle
} —result {}

Get Channel Configuration

We can no long postpone dealing with channel configuration. There are two main pieces of configuration information. One part
deals with configuring the channel as is done in SPI_InitChannel () and the other part is used for each SPI bus transaction.

We first present the get ChannelConfig command. This allows us to inspect the configuration that is being stored.

The mpssespi Package 15/59

::mpssespi getChannelConfig handle

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

The getChannelConfig command returns a dictionary containing the configuration information of the open channel
designated by handle. The keys of the dictionary and an explanation of the meaning of the corresponding value is given
below.

clockrate
The SPI bus clock rate. Valid values are from 0 to 30000000 Hz (30 MHz)

latencytimer

The latency timer value. Valid values are from 0 to 255. FTDI suggests minimum values of 1 for lower speed chips
and 2 for higher speed chips.

mode

The SPI bus mode. This is the standard SPI bus mode designation that controls when data is latched relative to the
clock edges. Valid values are O through 3.

csline

The bus line that is to be used as the SPI bus chip select. Valid values are strings from the set: "DBUS3", "DBUS4",
"DBUSS", "DBUS6" or "DBUS7". These names refer to pin designation on FTDI chips.

csactive
The level at which the chip select line is active. Valid values are strings from the set: "high" or "low".

initpindir
The I/O pin direction to be established when the channel is initialized. The value of this key is also a dictionary with
keys "0" - "7" and values of "in" or "out".

initpinvalue
The value settings for the I/O pins that are established when the channel is initialized. The value of this key is also a
dictionary with keys "0" - "7" and values that are any value Tcl representation of a boolean. A "true" value requests
the pin be set high and a "false" value requests the pin be set low.

closepindir
The 1/0 pin direction to be established when the channel is closed. The value of this key is also a dictionary with
the same keys as for the initpindir key.

closepinvalue

The value settings for the I/O pins that are established when the channel is closed. The value of this key is also a
dictionary with the same keys as for the initpinvalue key.

Xferunits
Specifies the units for which SPI bus data transfers are to happen. Valid values are "bits" or "bytes".

csenable
A boolean that specifies whether the chip select line is to be made active before the SPI bus transaction.

csdisable
A boolean that specifies whether the chip select line is to be made inactive after the SPI bus transaction.

The implementation of getChannelConfig is conceptually quite simple. We use the handle to look up the channel informa-
tion and then build a Tcl dictionary object to hold that information. The code is long and rather tedious since there are so many
dictionary keys to handle.

<<command procedures>>=

static int

GetChannelConfigProc (
ClientData clientData,

The mpssespi Package 16/59

Tcl_Interp xinterp,
int objc,
Tcl_Obj *const objvI[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
Tcl_Obj xhandleObj ;

MPSSEChanConfig xchanConfig ;

Tcl_Obj xconfigObj ;

char xcsline ;

Tcl_Obj *pinObj ;

if (objc == 2) {
handleObj = objvI[1l] ;
} else {

Tcl_WrongNumArgs (interp, 1, objv, "channelHandle")
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, handleObj, &chanConfig) != TCL_OK) {
return TCL_ERROR ;

configObj = Tcl_NewDictObj() ;

/ *
* clockrate
x/
if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("clockrate", -1),
Tcl_NewLongObj (chanConfig->config.ClockRate)) != TCL_OK) {
goto errorout ;
}
/ *
* latencytimer
*/
if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("latencytimer", -1),
Tcl_NewIntObj(chanConfig->config.LatencyTimer)) != TCL_OK) {
goto errorout ;
}
/ *
* mode
x/

if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj ("mode", -1),
Tcl_NewIntObj (
chanConfig->config.configOptions & SPI_CONFIG_OPTION_MODE_MASK))
!= TCL_OK) {
goto errorout ;
}
/ *
* csline
x/
switch (chanConfig->config.configOptions & SPI_CONFIG_OPTION_CS_MASK) {
case SPI_CONFIG_OPTION_CS_DRBRUS3:
csline = "DBUS3"
break ;

case SPI_CONFIG_OPTION_CS_DRBRUS4:
csline = "DBUS4"
break ;

case SPI_CONFIG_OPTION_CS_DBUSS5:
csline = "DBUSS5"
break ;

The mpssespi Package 17/59

case SPI_CONFIG_OPTION_CS_DBUSG6:
csline = "DBUS6"
break ;

case SPI_CONFIG_OPTION_CS_DBUS7:

csline = "DBUS7"
break ;

default:
csline = "UNKNOWN" ;
break ;

if (Tcl_DictObjPut (interp, configObj, Tcl NewStringObj("csline", -1),
Tcl_NewStringObj(csline, -1)) != TCL_OK) {
goto errorout ;

/ *
* csactive
*/
if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj ("csactive", -1),
Tcl_NewStringObj (
(chanConfig->config.configOptions & SPI_CONFIG_OPTION_CS_ACTIVELOW) <2
"low" : "high", -1)) != TCL_OK) {
goto errorout ;
}
/ *
* initpindir
*/
if (GetDirectionDict (interp,
EXTRACT_BITFIELD (chanConfig->config.Pin, PIN_INITIAL_DIR_OFFSET,
PIN_BITFIELD_LENGTH), &pinObj) != TCL_OK) { /= Q ./
goto errorout ;

if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("initpindir", -1),
pinObj) != TCL_OK) {
goto pinerrorout ;

/ *
* initpinvalue
*/
if (GetPinValueDict (interp,
EXTRACT_BITFIELD (chanConfig->config.Pin, PIN_INITIAL_VALUE_OFFSET,
PIN_BITFIELD_LENGTH), &pinObj) !'= TCL_OK) { /+ @ =/
goto errorout ;

if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("initpinvalue", -1),
pinObj) !'= TCL_OK) {
goto pinerrorout ;

/ *
* closepindir
*/
if (GetDirectionDict (interp,
EXTRACT_BITFIELD (chanConfig->config.Pin, PIN_CLOSE_DIR_OFFSET,
PIN_BITFIELD_LENGTH), &pinObj) != TCL_OK) {
goto errorout ;

if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("closepindir", -1),
pinObj) != TCL_OK) {
goto pinerrorout ;

The mpssespi Package 18/59

* closepinvalue
x/
if (GetPinValueDict (interp,
EXTRACT_BITFIELD (chanConfig->config.Pin, PIN_CLOSE_VALUE_OFFSET,
PIN_BITFIELD_LENGTH), &pinObj) != TCL_OK) {
goto errorout ;

if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("closepinvalue", -1),
pinObj) !'= TCL_OK) {
goto pinerrorout ;

/ *
* xferunits
*/
if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj ("xferunits", -1),
Tcl _NewStringObj (IS_BIT_XFER (chanConfig->transferOptions) *?
"bits" : "bytes", -1)) != TCL_OK) { /x © x«/
goto errorout ;

}

/ *
* csenable
*/
if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("csenable", -1),
Tcl_NewBooleanObj ((chanConfig->transferOptions &
SPI_TRANSFER_OPTIONS_CHIPSELECT_ENABLE) != 0)) != TCL_OK) {
goto errorout ;
}
/ *
* csdisable
*/

if (Tcl_DictObjPut (interp, configObj, Tcl_NewStringObj("csdisable", -1),
Tcl_NewBooleanObij ((chanConfig->transferOptions &
SPI_TRANSFER_OPTIONS_CHIPSELECT_DISABLE) != 0)) != TCL_OK) {

goto errorout ;

Tcl_SetObjResult (interp, configObj) ;
return TCL_OK ;

pinerrorout
Tcl_DecrRefCount (pinObij) ;

errorout:
Tcl_DecrRefCount (configObij) ;
return TCL_ERROR ;

<<static data>>=
static char const getChannelConfigCmdName[] = "::mpssespi::getChannelConfig" ;
static char const getChannelConfigName[] = "getChannelConfig" ;

<<command creation>>=
Tcl_CreateObjCommand (interp, getChannelConfigCmdName, GetChannelConfigProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, getChannelConfigName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (getChannelConfigName, -1),
Tcl_NewStringObj (getChannelConfigCmdName, -1)) != TCL_OK) {
goto errorout ;

The mpssespi Package 19/59

(1) GetDirectionDict () is discussed below.
(2] GetPinValueDict () is also discussed below.

(3] Constants of the form SPT_TRANSFER_OPTIONS_XXX are found in the 11bMPSSE_ spi . h header file.

<<getChannelConfig tests>>=
test getChannelConfig-1.0 {
read the channel configuration
} —setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespil closeChannel S$handle
} —body {
dict get [::mpssespi getChannelConfig S$handle] clockrate
} —result {10000000}

Pin Direction Configuration

The direction of the I/O pins is specified as a Tcl dictionary. The function below converts the bit encoded values of the configu-
ration information into a Tcl dictionary. Later, we will need the complement of this function to go the other way.

The code involves some bit-twiddling and we will see a lot more of that since 1 1bMPSSE-SP I encodes several portions of the
configuration information as bit fields. The strategy here is to use a ma sk variable, which is shifted left as we proceed along the
bitfield, to probe for set bits within the bit field.

<<utility functions>>=

static int

GetDirectionDict (
Tcl_Interp xinterp,
uint8 dirBitMask,
Tcl_Obj xxdirDictObjPtr)

char key[2] ; /+ @ x/
Tcl_Obj *dirObj ;
uint8 mask ;

int count ;

assert (dirDictObjPtr != NULL) ;

dirObj = Tcl_NewDictObj () ;

key[0] = "0" ;
key[1l] = "\0" ;
for (mask = 1, count = PIN_BITFIELD_LENGTH ; count > 0 ;
mask <<= 1, count—--) {
if (Tcl_DictObjPut (interp, dirObj, Tcl_NewStringObj (key, -1),
Tcl_NewStringObij ((dirBitMask & mask) ? "out" : "in", -1))
!= TCL_OK) {

goto errorout ;
key[0]++ ; /= Q i/
+*dirDictObjPtr = dirObj ;
return TCL_OK ;
errorout:

Tcl_DecrRefCount (dirObij) ;
*dirDictObjPtr = NULL ;

The mpssespi Package 20/59

return TCL_ERROR ;

o Since we are putting things in a dictionary, we will need to compose a string for the dictionary key.

2] Note the assumption of a character encoding where the next decimal digit is also the next integer value. This works of
ASCII, of course, and is just too tempting not to use. A better way would be to use a static array of characters of the
decimal digits and iterate through that array to fill in the key string value. But let’s not guild the lily.

We also need a similar function to deal with the pin value configuration information. It follows the same pattern shown above,
producing a dictionary of boolean values.

<<utility functions>>=

static int

GetPinValueDict (
Tcl_Interp xinterp,
uint8 pinBitMask,
Tcl_Obj **xpinDictObjPtr)

char keyl[2] ;
Tcl_Obj xpinObj ;
uint8 mask ;

int count ;

assert (pinDictObjPtr != NULL) ;

pinObj = Tcl_NewDictObj() ;

key[0] = "0" ;

key[1] = "\0" ;

for (mask = 1, count = PIN_BITFIELD_LENGTH ; count > 0 ;
mask <<= 1, count--) {

if (Tcl_DictObjPut (interp, pinObj, Tcl_NewStringObj (key, -1),
Tcl_NewBooleanObj ((pinBitMask & mask) ? 1 : 0))
!= TCL_OK) {
goto errorout ;

key[0]++ ;

*pinDictObjPtr = pinObj ;
return TCL_OK ;

errorout:
Tcl_DecrRefCount (pinObj) ;
*pinDictObjPtr = NULL ;
return TCL_ERROR ;

Set Channel Configuration

We also need a command for setting the channel configuration. Note that changing the channel configuration with this command
does not cause that configuration to be updated to the FTDI chip. That is only done when the initChannel command is
invoked. It is just the way the library works. So the usual sequence is to open the channel, modify the configuration information
from its default values if necessary and then initialize the channel. So, the command only modifies the configuration information
that is associated with an open channel. It is still necessary to invoke initChannel to set the new values of the configuration
into the chip.

The mpssespi Package 21/59

::mpssespil setChannelConfig handle configuration

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

configuration
A dictionary value that contains the channel configuration information.

The setChannelConfig command changes the channel configuration information. This command only changes those
parts of the channel configuration given by the configuration dictionary value. Configuration information for missing
keys is not changed. Dictionary keys that do not match one of the values below are silently ignored.

The keys of the dictionary are the same as those returned from the getChannelConfig command. They are listed
below for easy reference. The command returns the empty string.

clockrate
The SPI bus clock rate. Valid values are from 0 to 30000000 Hz (30 MHz)

latencytimer
The latency timer value. Valid values are from 0 to 255. FTDI suggests minimum values of 1 for lower speed chips

and 2 for higher speed chips.

mode
The SPI bus mode. This is the standard SPI bus mode designation that controls when data is latched relative to the
clock edges. Valid values are O through 3.

csline
The bus line that is to be used as the SPI bus chip select. Valid values are strings from the set: "DBUS3", "DBUS4",
"DBUSS5", "DBUS6" or "DBUS7".

csactive
The level at which the chip select line is active. Valid values are strings from the set: "high" or "low".

initpindir
The I/O pin direction to be established when the channel is initialized. The value of this key is also a dictionary with
keys "0" - "7" and values of "in" or "out".

initpinvalue
The value settings for the I/O pins that are established when the channel is initialized. The value of this key is also a
dictionary with keys "0" - "7" and values that are any value Tcl representation of a boolean. A "true" value request.
the pin be set high and a "false" value requests the pin be set low.

closepindir
The 1/0 pin direction to be established when the channel is closed. The value of this key is also a dictionary with
the same keys as for the initpindir key.

closepinvalue
The value settings for the I/O pins that are established when the channel is closed. The value of this key is also a
dictionary with the same keys as for the initpinvalue key.

Xferunits
Specifies the units for which SPI bus data transfers are to happen. Valid values are "bits" or "bytes".

csenable
A boolean that specifies whether the chip select line is to be made active before the SPI bus transaction.

csdisable
A boolean that specifies whether the chip select line is to be made inactive after the SPI bus transaction.

The implementation strategy here is simlar to that of the getChannelConfiguration command. Again the code is rather

The mpssespi Package 22/59

long and tedious to deal with all the different configuration settings. However, one consideration is to make the setting of the
configuration transactional. So we only change the configuration if there is no error in setting any of the fields. We accomplish
that by using a working copy of the channel configuration while we are decoding the configuration argument and then, if
all went correctly, overwriting the channel configuration with the modified information.

<<command procedures>>=
static int
SetChannelConfigProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj xconst objv[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
MPSSEChanConfig xchanConfig ;

MPSSEChanConfig newConfig ;

Tcl_Obj xconfigObij ;

Tcl_Obj *keyObj ;

Tcl_Obj xvalueObj ;

if (objc != 3) {
Tcl_WrongNumArgs (interp, 1, objv, "channelHandle configuration") ;
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l], &chanConfig) != TCL_OK) {
return TCL_ERROR ;

}
newConfig = *xchanConfig ; /x @ «/

configObj = objv[2] ;

/ *
* clockrate
*/
keyObj = Tcl_NewStringObij("clockrate", -1) ;
if (Tcl_DictObjGet (interp, configObj, keyObj, &valueObj) != TCL_OK) {
goto errorout ;
}
if (valueObj) { /x @ %/
long clockrate ;
if (Tcl_GetLongFromObj (interp, valueObj, &clockrate) != TCL_OK) {
goto errorout ;
}
if (clockrate < 0 || clockrate > 30000000) {
Tcl_SetObjResult (interp, Tcl_ObjPrintf (
"bad clockrate value, %1d: should be between 0 and 30000000",
clockrate)) ;
goto errorout ;
}
newConfig.config.ClockRate = clockrate ;
}
/ *
* latencytimer
*/
Tcl_SetStringObj (keyObj, "latencytimer", -1) ;
if (Tcl_DictObijGet (interp, configObj, keyObj, &valueObj) != TCL_OK) {

goto errorout ;
}
if (valueObj) {
int latencytimer ;

The mpssespi Package

23/59

}

if (Tcl_GetIntFromObj (interp,

goto errorout ;

}

if (latencytimer < 0 ||

Tcl_SetObjResult (interp,
"bad latency timer value,

latencytimer))
goto errorout ;

}

newConfig.config.LatencyTimer =

valueObij,

latencytimer > 255)
Tcl _ObjPrintf (
%d:

’

&latencytimer)

{

latencytimer ;

/ *
* mode
x/
Tcl_SetStringObj (keyObj, "mode", -1) ;
if (Tcl_DictObjGet (interp, configObj, keyObj, &valueObj) != TCL_OK)
goto errorout ;
}
if (valueObij) {
int mode ;
if (Tcl_GetIntFromObj(interp, valueObj, &mode) != TCL_OK) {
goto errorout ;
}
if (mode < 0 || mode > 3) {
Tcl_SetObjResult (interp, Tcl_ObjPrintf (
"bad mode value, %d: should be between 0 and 3", mode))
goto errorout ;
}
newConfig.config.configOptions =
INSERT_BITFIELD (newConfig.config.configOptions, mode, 0, 2)
}
/ *
* csline
*/
Tcl_SetStringObj (keyObj, "csline", -1) ;
if (Tcl_DictObjGet (interp, configObj, keyObj, &valueObj) != TCL_OK)
goto errorout ;
}
if (valueObij) {
char const *csline ;
uint8 csconfig ;
csline = Tcl_GetString(valueObij) ;
if (strcmp(csline, "DBUS3") == 0) {
csconfig = SPI_CONFIG_OPTION_CS_DBUS3 ;
} else if (strcmp(csline, "DBUS4") == 0) {
csconfig = SPI_CONFIG_OPTION_CS_DBUS4 ;
} else if (strcmp(csline, "DBUSS5") == 0) {
csconfig = SPI_CONFIG_OPTION_CS_DBUSS ;
} else if (strcmp(csline, "DBUS6") == 0) {
csconfig = SPI_CONFIG_OPTION_CS_DBUS6 ;
} else if (strcmp(csline, "DBUS7") == 0) {
csconfig = SPI_CONFIG_OPTION_CS_DBUS7 ;
} else {
Tcl_SetObjResult (interp, Tcl_ObjPrintf (
"bad csline value, %s: should be one of DBUS3, DBUS4, DBUS5, DBUS6,

csline)) ;
goto errorout ;

newConfig.config.configOptions =

!'= TCL_OK) {

should be between 0 and 255",

{

’

’

{

DBUS7",

The mpssespi Package 24 /59

CLEARFIELD (newConfig.config.configOptions, 2, 3) | csconfig ;
}
/ *
* csactive
*/
Tcl_SetStringObj (keyObj, "csactive", -1) ;
if (Tcl_DictObjGet (interp, configObj, keyObj, &valueObj) != TCL_OK) {

goto errorout ;

}
if (valueObij) {
char const *csactive ;

csactive = Tcl_GetString(valueObj) ;

if (strcmp (csactive, "high") == 0) {
newConfig.config.configOptions &= ~SPI_CONFIG_OPTION_CS_ACTIVELOW ;
} else if (strcmp(csactive, "low") == 0) {
newConfig.config.configOptions |= SPI_CONFIG_OPTION_CS_ACTIVELOW ;
} else {

Tcl_SetObjResult (interp, Tcl_ObjPrintf (
"bad csactive value, %s: should be high or low",
csactive)) ;

goto errorout ;

}

/ *
* initpindir
*/
Tcl_SetStringObj(keyObj, "initpindir", -1) ;
if (Tcl_DictObijGet (interp, configObj, keyObj, &valueObj) != TCL_OK) {

goto errorout ;
}
if (valueObj) {
uint8 initpindir = EXTRACT_BITFIELD (newConfig.config.Pin,
PIN_INITIAL_DIR_OFFSET, PIN_BITFIELD_LENGTH) ;

if (GetDirectionBitMask (interp, valueObj, &initpindir) !'= TCL_OK) {
goto errorout ;
}
newConfig.config.Pin = INSERT_BITFIELD (newConfig.config.Pin,
initpindir, PIN_INITIAL_DIR_OFFSET, PIN_BITFIELD_LENGTH) ;
}

/ *
* initpinvalue
*/
Tcl_SetStringObj (keyObj, "initpinvalue", -1) ;
if (Tcl_DictObjGet (interp, configObj, keyObj, &valueObj) != TCL_OK) {

goto errorout ;
}
if (valueObj) {
uint8 initpinvalue = EXTRACT_BITFIELD (newConfig.config.Pin,
PIN_INITIAL_VALUE_OFFSET, PIN_BITFIELD_LENGTH) ;

if (GetPinValueBitMask (interp, valueObj, &initpinvalue) != TCL_OK) {
goto errorout ;
}
newConfig.config.Pin = INSERT_BITFIELD (newConfig.config.Pin,
initpinvalue, PIN_INITIAL_VALUE_OFFSET, PIN_BITFIELD_LENGTH) ;
}
/ *
* closepindir
*/
Tcl_SetStringObj (keyObj, "closepindir", -1) ;

The mpssespi Package 25/59

if (Tcl_DictObjGet (interp, configObj, keyObj, &valueObj) != TCL_OK) {
goto errorout ;
}
if (valueObj) {
uint8 closepindir = EXTRACT_BITFIELD (newConfig.config.Pin,
PIN_CLOSE_DIR_OFFSET, PIN_BITFIELD_LENGTH) ;

if (GetDirectionBitMask (interp, valueObj, &closepindir) != TCL_OK) {
goto errorout ;

}
newConfig.config.Pin = INSERT_BITFIELD (newConfig.config.Pin,

closepindir, PIN_CLOSE_DIR OFFSET, PIN_BITFIELD_LENGTH) ;
}

/ *
* closepinvalue
*/
Tcl_SetStringObij (keyObj, "closepinvalue", -1) ;
if (Tcl_DictObijGet (interp, configObj, keyObij, &valueObj) != TCL_OK) {

goto errorout ;
}
if (valueObj) {
uint8 closepinvalue = EXTRACT_BITFIELD (newConfig.config.Pin,
PIN_CLOSE_VALUE_OFFSET, PIN_BITFIELD LENGTH) ;

if (GetPinValueBitMask (interp, valueObj, &closepinvalue) != TCL_OK) {
goto errorout ;

}
newConfig.config.Pin = INSERT_BITFIELD (newConfig.config.Pin,

closepinvalue, PIN_CLOSE_VALUE_OFFSET, PIN_BITFIELD_LENGTH) ;
}

/ *

* transfer options

*/
if (SetTransferOptions (interp, configObj, &newConfig.transferOptions)

!= TCL_OK) { /x> @ %/
goto errorout ;
}
xchanConfig = newConfig ; /x @ %/

Tcl_DecrRefCount (keyObij) ;
Tcl_ResetResult (interp) ;
return TCL_OK ;

errorout:
Tcl_DecrRefCount (keyObj) ;
return TCL_ERROR ;

<<static data>>=
static char const setChannelConfigCmdName[] = "::mpssespi::setChannelConfig" ;
static char const setChannelConfigName[] = "setChannelConfig" ;

<<command creation>>=
Tcl_CreateObjCommand (interp, setChannelConfigCmdName, SetChannelConfigProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, setChannelConfigName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (setChannelConfigName, -1),
Tcl_NewStringObj (setChannelConfigCmdName, -1)) != TCL_OK) {
goto errorout ;

The mpssespi Package 26 /59

(1] Here we take a copy of the channel configuration. As we decode the input dictionary argument, the values are placed in
this copy.

(2] Missing keys are just silently ignored.

o Since transfer options may also be given on commands that cause SPI bus transactions, there is common code to deal with
them.
o Finally, we can overwrite the configuration with a modified value.

<<setChannelConfig tests>>=
test setChannelConfig-1.0 {
set the channel configuration
} —setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespl closeChannel $handle

} —body {
::mpssespli setChannelConfig S$handle {xferunits bits}
dict get [::mpssespi getChannelConfig $handle] xferunits

} —result {bits}

The code for this command performs some bit twiddling operations as it translates the configuration information from Tcl objects
into the various bit fields and structure members of the 11 bMP SSE—-SP I channel configuration. Below are the macro definitions
for all this twiddling. Note that we do this using “C” preprocessor macros. A more modern and arguably better approach
would be to use static inline functions available in compilers supporting the C99 standard. However, in keeping with Tcl
conventions, we tend to code to the lowest common denominator of compiler features.

<<macro definitions>>=

#define BITMASK (1) ((1 << (1)) - 1)

#define FIELDMASK (o, 1) (BITMASK (1) << (o))

#define EXTRACT BITFIELD (v, o, 1) (((v) & FIELDMASK (o, 1)) >> (o))
#define CLEARFIELD (v, o, 1) ((v) & ~FIELDMASK (o, 1))

#define ALIGNTOFIELD(f, o, 1) (((f) & BITMASK(l)) << (0))
#define INSERT_BITFIELD (v, £, o, 1)\
(CLEARFIELD (v, o, 1) | ALIGNTOFIELD (f, o, 1))

#define IS_BIT_XFER (o) (((o) & SPI_TRANSFER_OPTIONS_SIZE_IN_BITS) != 0)

Bit fields are defined by offset (o) and length (1). Offsets of O refer to the least significant bit of the operand. The length of a bit
field is the number of contiguous bits that form the field. A bit mask is a value with 1’s in each bit position of the field and 0’s
elsewhere.

We also need a few constants that are not provided in the library header files.

<<macro definitions>>=
#define PIN_BITFIELD_LENGTH 8

#define PIN_INITIAL_DIR OFFSET 0
#define PIN_INITIAL VALUE_OFFSET\
(PIN_INITIAL_DIR OFFSET + PIN_BITFIELD_LENGTH)
#define PIN_CLOSE_DIR_OFFSET\
(PIN_INITIAL_VALUE_OFFSET + PIN BITFIELD LENGTH)
#define PIN_CLOSE_VALUE_OFFSET\
(PIN_CLOSE_DIR_OFFSET + PIN BITFIELD LENGTH)

Note that the pin information is grouped together and we define the macros to emphasize that fact.

The mpssespi Package 27 /59

Pin Direction Configuration

Similar to what we did for the getChannelConfig command, we have factored out some common processing to deal with
I/O pins.

The GetDirectionBitMask () function transforms a dictionary which specifies I/O pin direction into a bit mask that is
suitable for use in the 1ibMPSSE-SPI configuration.

The code uses a similar strategy as GetDirectionDict ()

<<utility functions>>=

static int

GetDirectionBitMask (
Tcl_Interp xinterp,
Tcl_Obj xdirSpecObij,
uint8 xdirectionPtr)

char key[2] ;
Tcl_Obj *keyObj ;
uint8 mask ;

int count ;

uint8 direction ;

assert (directionPtr != NULL) ;
direction = *directionPtr ;
key[0] = 70" ;

key[1l] = "\0" ;

keyObj = Tcl_NewStringObj (NULL, 0) ;

for (mask = 1, count = 8 ; count > 0 ; mask <<= 1, count—--) {
Tcl_Obj xdirValueObj ;
char const xdirValueStr ;

Tcl_SetStringObj (keyObj, key, -1) ;
key[0]++ ;

if (Tcl_DictObjGet (interp, dirSpecObj, keyObj, &dirvValueObj)
= TCL_OK) {
goto errorout ;
}
if (dirValueObij) {
dirValueStr = Tcl_GetString(dirValueObj) ;

if (strcmp(dirvValueStr, "out") == 0) {
direction |= mask ;
} else if (strcmp(dirValueStr, "in") == 0) {
direction &= ~mask ;
} else {
Tcl_SetObjResult (interp, Tcl_ObjPrintf (
"bad direction value, \"%s\": should be \"in\" or \"out\"",

dirvValueStr)) ;
goto errorout ;

}

Tcl_DecrRefCount (keyObij) ;

+directionPtr = direction ;

return TCL_OK ;

errorout:
Tcl_DecrRefCount (keyObij) ;

The mpssespi Package 28/59

return TCL_ERROR ;

We also need a function to handle the I/O pin values. This is the analog to GetPinValueDict ().

<<utility functions>>=

static int

GetPinValueBitMask (
Tcl_Interp xinterp,
Tcl_Obj xlvalueSpecObij,
uint8 xlvaluePtr)

char key[2] ;
Tcl_Obj xkeyObj ;
uint8 mask ;

int count ;

uint8 lvalue ;

assert (lvaluePtr != NULL) ;

lvalue = x1lvaluePtr ;

key[0] = 70’ ;

key[1l] = "\0" ;

keyObj = Tcl_NewStringObj (NULL, 0) ;

for (mask = 1, count = 8 ; count > 0 ; mask <<= 1, count--) {
Tcl_Obj *valueObj ;
int pinValue ;

Tcl_SetStringObj (keyObj, key, -1) ;
key[0]++ ;

if (Tcl_DictObjGet (interp, lvalueSpecObj, keyObj, &valueObj)
= TCL_OK) {
goto errorout ;
}
if (valueObj) {
if (Tcl_GetBooleanFromObj(interp, valueObj, &pinValue) != TCL_OK) {
goto errorout ;
}
if (pinvalue) {
lvalue |= mask ;
} else {
lvalue &= ~mask ;

;cl_DechefCount(keyObj) 8
*1lvaluePtr = 1lvalue ;
return TCL_OK ;

errorout:

Tcl_DecrRefCount (keyObj) ;
return TCL_ERROR ;

Close Channel

When channels are no longer needed, they may be closed. Closing releases the resources acquired when the channel was opened.

The mpssespi Package

29/59

::mpssespi closeChannel handle

handle

The closeChannel command closes the SPI channel associated with handle.

A mpssespi channel handle as returned from a successful call to the openChannel command.

The code is a rather direct interface to SPI_CloseChannel.

<<command procedures>>=
static int
CloseChannelProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj *const objvI[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo x)clientData ;
Tcl_Obj xhandleObj ;

MPSSEChanConfig xchanConfig ;

FT_STATUS status ;

int result ;

if (objc == 2) {
handleObj = objv[1l] ;
} else {

Tcl_WrongNumArgs (interp, 1, objv, "channelHandle")
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, handleObj, &chanConfig) != TCL_OK)
return TCL_ERROR ;

ifdef TEST

status = 0 ;
else

status = SPI_CloseChannel (chanConfig->handle) ;
endif /* TEST =/

result = SetStatusResult (interp, status) ;

if (result == TCL_OK) {

DeleteHandleMapping (pkgInfo, handleObj) ; /+ @ «/
Tcl_ResetResult (interp) ;

return result ;

<<static data>>=
static char const closeChannelCmdName[] = "::mpssespi::closeChannel"
static char const closeChannelName[] = "closeChannel"

<<command creation>>=
Tcl_CreateObjCommand (interp, closeChannelCmdName, CloseChannelProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, closeChannelName, 0) != TCL_OK) {
goto errorout ;

}

{

if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj(closeChannelName, -1),

Tcl_NewStringObj(closeChannelCmdName, -1)) != TCL_OK) {

The mpssespi Package 30/59

goto errorout ;

o We clean up the handle mapping and configuration information here.

<<closeChannel tests>>=
test closeChannel-1.0 {
close an open channel

} —setup {

set handle [::mpssespi openChannel 0]
} —cleanup {
} —body {

set handle [::mpssespi closeChannel S$handle]
} —result {}

<<closeChannel tests>>=
test closeChannel-2.0 {
close a non-existant channel

} —setup {
} —cleanup {
} -body {

::mpssespil closeChannel mpsse2000
} —result {unknown channel handle, "mpsse2000"} -returnCodes error

Read Channel

The readChannel command is provided to transfer data from a peripheral.

::mpssespil readChannel handle size ?xferoptions?

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

size
The number of bits or bytes to read. The units associated with the size value is determined by the transfer options
configuration information.

xferoptions
A dictionary that specifies details of the read transaction. If the xferoptions argument is missing, then the previously
specified values from the channel configuration are used. If present, the options values override the previous con-
figuration for this bus transaction only. Not all keys need be supplied. Missing keys use the channel configuration.
Unrecognized keys are silently ignored. The dictionary keys are the same as for that part of the channel configuration
that deals with the transfer, namely:

xferunits

Specifies the units for which SPI bus data transfers are to happen. Valid values are "bits" or "bytes".
csenable

A boolean that specifies whether the chip select line is to be made active before the SPI bus transaction.
csdisable

A boolean that specifies whether the chip select line is to be made inactive after the SPI bus transaction.

The readChannel command performs a SPI bus transaction and returns a binary string containing the raw data read
from the SPI bus. Note that the command is blocking until the specified amount of data is returned (or an error happens).

As you would expect, this command invokes SPI_ReadChannel () to perform the SPI bus transaction. To provide space for
the data read in, we use a Tcl byte array.

The mpssespi Package

31/59

<<command procedures>>=
static int
ReadChannelProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj xconst objv[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
int xferSize ;

MPSSEChanConfig xchanConfig ;

uint32 transferOptions ;

Tcl_Obj xinputObj ;

unsigned char xinputBuf ;

unsigned inBufByteSize ;

uint32 xferActual ;

FT_STATUS status ;

int result ;

if (objc < 3 || objc > 4) {
Tcl_WrongNumArgs (interp, 1, objv, "channelHandle size ?xferoptions?")
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l], &chanConfig) != TCL_OK) {
return TCL_ERROR ;

if (chanConfig->isInitialized == 0) {
SetInitializationError (interp) ;
return TCL_ERROR ;

if (Tcl_GetIntFromObj(interp, objv([2], &xferSize) != TCL_OK) {
return TCL_ERROR ;

/ *
* Start with the previously established configuration information
x= for the transfer options.
*/
transferOptions = chanConfig->transferOptions ;
if (objc == 4) {
/ *
* If the additional argument is supplied, then we override
* the options for this transaction only.
*/
if (SetTransferOptions (interp, objv[3], &transferOptions) != TCL_OK) {
return TCL_ERROR ;

inputObj = Tcl_NewByteArrayObj (NULL, 0) ; /x @ «/
inBufByteSize = ConvertXferUnitsToBytes (transferOptions, xferSize) ;
inputBuf = Tcl_SetByteArraylLength (inputObj, inBufByteSize) ;

ifdef TEST
status = 0 ;
memset (inputBuf, ’'A’, inBufByteSize) ;
xferActual = xferSize ;

else

’

The mpssespi Package 32/59

status = SPI_Read(chanConfig->handle, inputBuf, xferSize, &xferActual,
transferOptions) ;

result = SetStatusResult (interp, status) ;
endif /x TEST x/
if (result == TCL_OK) {
if (IS_BIT_XFER(transferOptions)) {
int residueBits = xferActual % 8 ;
if (residueBits != 0) { /x @ x/

inputBuf [xferActual / 8] <<= 8 - residueBits ;

}
Tcl_SetByteArrayLength (inputObj,
ConvertXferUnitsToBytes (transferOptions, xferActual)) ;/+ © «/
Tcl_SetObjResult (interp, inputObj) ;
} else {
Tcl_DecrRefCount (inputObij) ;

return result ;

<<static data>>=
static char const readChannelCmdName[] = "::mpssespi::readChannel"
static char const readChannelName[] = "readChannel"

<<command creation>>=
Tcl_CreateObjCommand (interp, readChannelCmdName, ReadChannelProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, readChannelName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj(readChannelName, -1),
Tcl_NewStringObj (readChannelCmdName, -1)) != TCL_OK) {
goto errorout ;

o The returned result will be a byte array. The length is determined by how much data was requested.

2] For bit transfers, if the number of bits transferred is not a byte multiple, then we shift the residual bits to the upper part of
the byte. This recognizes that the order is most significant bits first and makes the resulting bit stream continguous in the
byte array.

(3] We have to set the length of the returned byte array to account for what was actually transferred.

<<readChannel tests>>=
test readChannel-1.0 {
read a channel
} —-setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespi closeChannel S$handle
} —body {
set read [::mpssespi readChannel $handle 10]
string index S$read 0
} —result {A}

<<readChannel tests>>=
test readChannel-2.0 {
read a channel with transfer options

The mpssespi Package 33/59

}

}

}

}

—-setup {
set handle [::mpssespi openChannel 0]
—cleanup {
::mpssespl closeChannel $handle
—body {
set read [::mpssespi readChannel $handle 10 {csenable false}]
string index $read 0
-result {A}

The SetTransferOptions function takes a set of transfer options and overlays them with any user supplied options. User
supplied options take precedence. This function is used in a number of places where 11bMP SSE—-SPT allows specifying transfer
options, i.e. on all the I/O functions.

The code itself deals with the dictionary of transfer options in much the same pattern as we have already seen.

<<utility functions>>=
static int
SetTransferOptions (

Tcl_Interp xinterp,
Tcl_Obj *optionsDict,
uint32 xoptionsPtr)

uint32 transferOptions ;
Tcl_Obj xkey ;

Tcl_Obj xoptValue ;

char const *unitsString ;
int csopt ;

assert (optionsDict != NULL) ;
assert (optionsPtr != NULL) ;
transferOptions = xoptionsPtr ;

key = Tcl_NewStringObj("xferunits", -1) ;

if (Tcl_DictObijGet (interp, optionsDict, key, &optValue) != TCL_OK) {
goto errorout ;

}

if (optValue) {
unitsString = Tcl_GetString (optValue) ;

if (strcmp(unitsString, "bits") == 0) {
transferOptions &= ~SPI_TRANSFER_OPTIONS_SIZE_IN_BITS ;
transferOptions |= SPI_TRANSFER _OPTIONS_SIZE_IN_BITS ;

} else if (strcmp (unitsString, "bytes") == 0) {
transferOptions &= ~SPI_TRANSFER_OPTIONS_SIZE_IN_BYTES ;
transferOptions |= SPI_TRANSFER_OPTIONS_SIZE_IN_BYTES ;

} else {

Tcl_SetObjResult (interp, Tcl_ObjPrintf (
"unknown \"xferunits\" option value, \"%$s\": should be \"bits\" or \"bytes ¢«
\"", unitsString)) ;
goto errorout ;

}
Tcl_DecrRefCount (key) ;

key = Tcl_NewStringObj("csenable", -1) ;
if (Tcl_DictObijGet (interp, optionsDict, key, &optValue) != TCL_OK) {
goto errorout ;
}
if (optValue) {
if (Tcl_GetBooleanFromObj(interp, optValue, &csopt) != TCL_OK) {
goto errorout ;

The mpssespi Package 34 /59

if (csopt) {

transferOptions |= SPI_TRANSFER_OPTIONS_CHIPSELECT_ENABLE ;
} else {

transferOptions &= ~SPI_TRANSFER_OPTIONS_CHIPSELECT_ ENABLE ;

}
Tcl_DecrRefCount (key) ;

key = Tcl_NewStringObj("csdisable", -1) ;
if (Tcl_DictObjGet (interp, optionsDict, key, &optValue) != TCL_OK) {
goto errorout ;
}
if (optValue) {
if (Tcl_GetBooleanFromObj(interp, optValue, &csopt) != TCL_OK) {
goto errorout ;
}
if (csopt) {
transferOptions |= SPI_TRANSFER_OPTIONS_CHIPSELECT_DISABLE ;
} else {
transferOptions &= ~SPI_TRANSFER_OPTIONS_CHIPSELECT_DISABLE ;

}
Tcl_DecrRefCount (key) ;

+optionsPtr = transferOptions ;
return TCL_OK ;

errorout:
Tcl_DecrRefCount (key) ;
return TCL_ERROR ;

We also factor out here a small function to round up a number of bits to the nearest whole byte. The check against the transfer
options insures that the conversion is necessary.

<<utility functions>>=

static int

ConvertXferUnitsToBytes (
uint32 transferOptions,
uint32 xferSize)

return IS_BIT_XFER(transferOptions) ? (xferSize + 7) / 8 : xferSize ;

Write Channel

The writeChannel command is provided to transfer data to a peripheral.

The mpssespi Package 35/59

::mpssespl writeChannel handle outdata ?xferoptions? ?nbits?

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

outdata
The data to be written to the SPI bus. This is interpreted as a byte array and the raw byte values contained in this
argument are written directly to the SPI bus.

xferoptions
A dictionary that specifies details of the read transaction. If the xferoptions argument is missing, then the previously
specified values from the channel configuration are used. If present, the options values override the previous config-
uration only for this transaction. Not all keys need be supplied. Missing keys use the previously established channel
configuration. Extraneous keys are silently ignored. The dictionary keys are the same as for that part of the channel
configuration that deals with the transfer, namely:

xferunits
Specifies the units for which SPI bus data transfers are to happen. Valid values are "bits" or "bytes".

csenable
A boolean that specifies whether the chip select line is to be made active before the SPI bus transaction.

csdisable
A boolean that specifies whether the chip select line is to be made inactive after the SPI bus transaction.

nbits
For SPI bus writes where the length of the transfer is specified in bits (i.e. the xferunits transfer option has the
value bits), This argument specifies the number of bits in outdata to transfer. If the argument is missing, then all
the bytes contained in outdata are transferred (i.e. the number of bits transferred is the length of outdata in bytes
times eight). Otherwise, only the first nbits of outdata is written to the bus. If transfer units are specified as bytes,
then the value of this argument is ignored.

The writeChannel command performs a SPI bus transaction clocking outdata to the bus. The return value of the
command is an integer value giving the amount of data actually transferred. The units of that data will be the same as that
specified by the xferunits transfer option configuration. Note that the command is blocking until the specified amount
of data is transferred (or an error happens).

Following the same pattern as the readChannel command, this code is primarily an interface to the SPI_WriteChannel ()
function.

<<command procedures>>=
static int
WriteChannelProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj xconst objv[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
MPSSEChanConfig xchanConfig ;

uint32 transferOptions ;

unsigned char =*outputBuf ;

int outBuflen ;

int bitLen ;

int xferSize ;

uint32 xferActual ;

FT_STATUS status ;

int result ;

if (objc < 3 || objc > 5) {
Tcl_WrongNumArgs (interp, 1, objv,

The mpssespi Package

36 /59

"channelHandle outdata ?xferoptions? ?nbits?")
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l], &chanConfig) != TCL_OK) {
return TCL_ERROR ;

if (chanConfig->isInitialized == 0) {
SetInitializationError (interp) ;
return TCL_ERROR ;

outputBuf = Tcl_GetByteArrayFromObj(objv[2], &outBufLen) ;

transferOptions = chanConfig->transferOptions ;
if (objc >= 4) {
if (SetTransferOptions (interp, objv[3], &transferOptions) != TCL_OK)

return TCL_ERROR ;

if (objc == 5) {
if (Tcl_GetIntFromObj (interp, objv([4], &bitLen) != TCL_OK) {
return TCL_ERROR ;
}
} else {
bitLen = outBuflLen x 8 ;
}
if (VerifyOutputLength (interp, transferOptions, outBuflen, bitLen) !=
TCL_OK) {
return TCL_ERROR ;
}
xferSize = IS_BIT_XFER(transferOptions) ? bitLen : outBuflen ;

ifdef TEST
(void) outputBuf ;
status = 0 ;
xferActual = xferSize ;
else

status = SPI_Write (chanConfig->handle, outputBuf, xferSize, &xferActual,
transferOptions) ;

result = SetStatusResult (interp, status) ;
endif /* TEST =/

result = SetStatusResult (interp, status) ;

if (result == TCL_OK) {

Tcl_SetObjResult (interp, Tcl_NewIntObj(xferActual)) ;

return result ;

<<static data>>=
static char const writeChannelCmdName[] = "::mpssespi::writeChannel"
static char const writeChannelName[] = "writeChannel"

<<command creation>>=
Tcl_CreateObjCommand (interp, writeChannelCmdName, WriteChannelProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, writeChannelName, 0) != TCL_OK) {
goto errorout ;

The mpssespi Package 37/59

}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj(writeChannelName, -1),
Tcl _NewStringObj (writeChannelCmdName, -1)) != TCL_OK) {
goto errorout ;

One minor complication in writing is we need to make sure that if the user has specified that the units of transfer is to be bits that
he has given us a buffer that contains at least that many bits. For transfers in byfes units, we can simply take the lenght of the
tranfer. Here we have factored out the verification that the user input is correct. We will use this function again later.

<<utility functions>>=
static int
VerifyOutputLength (
Tcl_Interp xinterp,
uint32 transferOptions,
int bytelen,
int bitLen)

/ *
* We need to verify that if the transfer is specified in bit units that
* the actual length of the byte array is long enough to contain that
* number of bytes.
*/
if (IS_BIT_XFER (transferOptions) && (bytelLen < (bitLen + 7) / 8)) {
Tcl_SetObjResult (interp, Tcl_ObjPrintf (
"output data is %d bytes long, \
however %d bits were requested to be written",
bytelLen, bitLen)) ;
return TCL_ERROR ;
}
return TCL_OK ;

<<writeChannel tests>>=
test writeChannel-1.0 {
write a channel
} —setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespi closeChannel $handle

} —body {
set outdata CCCCC
set written [::mpssespi writeChannel S$handle Soutdatal]
expr {$written == [string length $outdata]}

} —result {1}

<<writeChannel tests>>=
test writeChannel-2.0 {

write a channel using bits
} —setup {

set handle [::mpssespi openChannel 0]
} —cleanup {

::mpssespl closeChannel $handle
} —-body {

set outdata CCCCC

::mpssespl writeChannel $handle S$Soutdata {xferunits bits} 10
} —result {10}

<<writeChannel tests>>=
test writeChannel-3.0 {
write a channel using bits but an invalid length

The mpssespi Package 38/59

}

}

}

}

—-setup {
set handle [::mpssespi openChannel 0]
—cleanup {
::mpssespl closeChannel $handle
—body {
set outdata CCCCC
::mpssespl writeChannel $handle S$Soutdata {xferunits bits} 1000
-result {output data is 5 bytes long, however 1000 bits were requested to be written} <
-returnCodes error

Read/Write Channel

A SPI bus clocks data out of the master into a slave (peripheral chip) and out of a slave into the master simultaneously. Many
SPI bus peripherals use this feature and so a command that will both read and write is required. The readWriteChannel
command both transfers data out and returns the data clocked out of the slave.

::mpssespl readWriteChannel handle outdata ?xferoptions? ?nbits?

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

outdata
The data to be written to the SPI bus. This is interpreted as a byte array and the raw byte values contained in this
argument are written directly to the SPI bus.

Xxferoptions
A dictionary that specifies details of the read transaction. If the xferoptions argument is missing, then the previously
specified values from the channel configuration are used. If present, the options values override the previous config-
uration only for this transaction. Not all keys need be supplied. Missing keys use the previously established channel
configuration. Extraneous keys are silently ignored. The dictionary keys are the same as for that part of the channel
configuration that deals with the transfer, namely:

xferunits
Specifies the units for which SPI bus data transfers are to happen. Valid values are "bits" or "bytes".

csenable
A boolean that specifies whether the chip select line is to be made active before the SPI bus transaction.

csdisable
A boolean that specifies whether the chip select line is to be made inactive after the SPI bus transaction.

nbits
For SPI bus writes where the length of the transfer is specified in bits (i.e. the xferunits transfer option has the
value bits), This argument specifies the number of bits in outdata to transfer. If the argument is missing, then all
the bytes contained in outdata are transferred (i.e. the number of bits transferred is the length of outdata in bytes
times eight). Otherwise, only the first nbits of outdata is written to the bus. If transfer units are specified as bytes,
then the value of this argument is ignored. N.B. see the known problem with this command.

The readWriteChannel command performs a SPI bus transaction clocking outdata to the bus. The return value of the
command is a byte array value giving the data returned by the slave during the bus transaction. Note that the command is
blocking until the specified amount of data is transferred (or an error happens).

This code follows the pattern established above.

<<command procedures>>=
static int
ReadWriteChannelProc (

ClientData clientData,
Tcl_Interp xinterp,

The mpssespi Package

39/59

int objc,
Tcl_Obj *const objvI[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
MPSSEChanConfig xchanConfig ;
uint32 transferOptions ;
Tcl_Obj xinputObj ;

unsigned char *inputBuf ;
unsigned char xoutputBuf ;
int outBuflLen ;

int bitLen ;

int xferSize ;

uint32 xferActual ;

FT_STATUS status ;

int result ;

if (objc < 3 || objc > 5) {
Tcl _WrongNumArgs (interp, 1, objv,
"channelHandle outdata ?xferoptions? ?nbits?")
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l], &chanConfig) != TCL_OK) {
return TCL_ERROR ;

if (chanConfig->isInitialized == 0) {
SetInitializationError (interp) ;
return TCL_ERROR ;

outputBuf = Tcl_GetByteArrayFromObj(objv[2], &outBufLen) ;

transferOptions = chanConfig->transferOptions ;
if (objc >= 4) {

if (SetTransferOptions (interp, objv[3], &transferOptions) != TCL_OK)

return TCL_ERROR ;

if (objc == 5) {
if (Tcl_GetIntFromObj (interp, objv([4], &bitLen) != TCL_OK) {
return TCL_ERROR ;
}
} else {
bitLen = outBuflen * 8 ;
}
if (VerifyOutputLength (interp, transferOptions, outBuflen, bitLen) !=
TCL_OK) {
return TCL_ERROR ;
}
xferSize = IS_BIT_XFER(transferOptions) ? bitLen : outBuflen ;
inputObj = Tcl_NewByteArrayObj (NULL, 0) ;
inputBuf Tcl_SetByteArrayLength (inputObj, outBuflen) ;

ifdef TEST
(void) outputBuf ;
(void) inputBuf ;
status = 0 ;
memset (inputBuf, ’'B’, outBuflen) ;
xferActual = xferSize ;
else

{

The mpssespi Package 40/59

status = SPI_ReadWrite (chanConfig->handle, inputBuf, outputBuf,
xferSize, &xferActual, transferOptions) ;

result = SetStatusResult (interp, status) ;
endif /x TEST x/
result = SetStatusResult (interp, status) ;
if (result == TCL_OK) {
if (IS_BIT_XFER(transferOptions)) {
int residueBits = xferActual % 8 ;
if (residueBits != 0) {

inputBuf [xferActual / 8] <<= 8 - residueBits ;

}
Tcl_SetByteArrayLength (inputObij,
ConvertXferUnitsToBytes (transferOptions, xferActual)) ;
Tcl_SetObjResult (interp, inputObj) ;
} else {
Tcl_DecrRefCount (inputObij) ;

return result ;

<<static data>>=
static char const readWriteChannelCmdName[] = "::mpssespi::readWriteChannel" ;
static char const readWriteChannelName[] = "readWriteChannel" ;

<<command creation>>=
Tcl_CreateObjCommand (interp, readWriteChannelCmdName, ReadWriteChannelProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, readWriteChannelName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (readWriteChannelName, -1),
Tcl _NewStringObij (readWriteChannelCmdName, -1)) != TCL_OK) {
goto errorout ;

<<readWriteChannel tests>>=
test readWriteChannel-1.0 {
read/write a channel
} —setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespl closeChannel S$handle

} -body {
set outdata CCCCC
set read [::mpssespi readWriteChannel S$handle $outdata]

string index $read 0
} —result {B}

Is Busy

This command is a direct interface to the SPI__TIsBusy () function. Itis used to poll the state of the MISO line without clocking
the bus. Some SPI peripherals use the state of the MISO to indicate status or readyness.

The mpssespi Package

41/59

::mpssespi isBusy handle

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

The isBusy command polls the state of the MISO line without clocking the bus. The return value is a boolean indicating
whether the channel was busy.

The code for this command is a direct interface to the SPT_TIsBusy () function.

<<command procedures>>=
static int
IsBusyProc (

ClientData clientData,
Tcl_Interp xinterp,
int objc,

Tcl_Obj xconst objv[])

MPSSEPkgInfo *pkgInfo = (MPSSEPkgInfo
MPSSEChanConfig xchanConfig ;

bool busyStatus ;

FT_STATUS status ;

int result ;

if (objc !'= 2) {
Tcl_WrongNumArgs (interp, 1, objv,
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l],

return TCL_ERROR ;

if (chanConfig->isInitialized == 0) {
SetInitializationError (interp) ;
return TCL_ERROR ;

ifdef TEST
status = 0 ;
busyStatus = 0 ;
else

status = SPI_IsBusy(chanConfig->handle,

endif /x TEST =x/

*)clientData

’

"channelHandle")

result = SetStatusResult (interp, status) ;

if (result == TCL_OK) {

Tcl_SetObjResult (interp, Tcl_NewBooleanObj (busyStatus))

return result ;

<<static data>>=

static char const

static char const isBusyName[] = "isBusy"

<<command creation>>=

Tcl_CreateObjCommand (interp,

if

clientData, NULL) ;
(Tcl_Export (interp, ns, isBusyName, 0)

isBusyCmdName,

!= TCL_OK)

IsBusyProc,

{

&busyStatus)

isBusyCmdName[] = "::mpssespi::isBusy"

&chanConfigqg)

’

r

!= TCL_OK)

The mpssespi Package

42 /59

goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (isBusyName,
Tcl_NewStringObj (isBusyCmdName, -1)) != TCL_OK) {
goto errorout ;

<<isBusy tests>>=
test isBusy-1.0 {
check if a channel is busy
} —setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespil closeChannel S$handle
} -body {
::mpssespi isBusy S$handle
} —result {0}

Change CS

The 1ibMPSSE-SPI library provide a second way to change some of the channel configuration. In addition to the initCh
annel command, the changeCS command can be used to modify the channel configuration. However, only that part of the
configuration pertaining to the chip select and SPI bus mode is changed. So, invoking the setChannelConfig command to
change the configuration of mode, csline or csactive followed by invoking the changeCS command will install new values for

that portion of the channel configuration.

::mpssespi changeCsS handle

handle

A mpssespi channel handle as returned from a successful call to the openChannel command.

The changeCS command changes mode, csline and csactive configuration of the channel given by handle without having
to reinitialize the channel. For hardware configurations where multiple SPI peripherals are connected to the same FTDI
chip, this command can be used to switch the active chip select line. The return value is the empty string.

Again the code is just a direct interface to the SPI_ChangeCS () function.

<<command procedures>>=
static int
ChangeCSProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj xconst objv[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
MPSSEChanConfig xchanConfig ;

FT_STATUS status ;

int result ;

if (objc !'= 2) {
Tcl_WrongNumArgs (interp, 1, objv, "channelHandle")
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l], &chanConfig) != TCL_OK)

return TCL_ERROR ;

The mpssespi Package

43/59

if (chanConfig->isInitialized == 0) {
SetInitializationError (interp) ;
return TCL_ERROR ;

ifdef TEST

status = 0 ;
else

status = SPI_ChangeCS (chanConfig->handle, chanConfig->config.configOptions)
endif /* TEST =*/

result = SetStatusResult (interp, status) ;

if (result == TCL_OK) {

Tcl_ResetResult (interp) ;

return result ;

<<static data>>=
static char const changeCSCmdName[] = "::mpssespi::changeCS"
static char const changeCSName[] = "changeCS"

<<command creation>>=
Tcl_CreateObjCommand (interp, changeCSCmdName, ChangeCSProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, changeCSName, 0) != TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (changeCSName,
Tcl_NewStringObj (changeCSCmdName, -1)) != TCL_OK) {
goto errorout ;

<<changeCS tests>>=
test changeCS-1.0 {
change config options
} —-setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespi closeChannel S$handle
} -body {
::mpssespi changeCS $handle
} —result {}

Write GPIO

The FTDI chips also have I/O pins associated with them that can be controlled via the SPI library.

’

The mpssespi Package 44 /59

::mpssespi writeGPIO handle direction values

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.
direction
A dictionary with keys "0", "1" ... "7" corresponding to the 8 GPIO lines and with values of either "in" or "out".

Any missing GPIO line key is set to "in".

values
A dictionary with keys "0", "1" .. "7" and values that are boolean values corresponding to logic low (false) and logic
high (true). Any missing GPIO line value is set to "false".

The writeGPIO command controls the direction and state of the eight GPIO lines associated with the SPI channel. The
return value of this command is the empty string.

The command is another direct interface to a library function.

<<command procedures>>=
static int
WriteGPIOProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,
Tcl_Obj *const objvI[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
MPSSEChanConfig xchanConfig ;

uint8 dir ;

uint8 lvalue ;

FT_STATUS status ;

int result ;

if (objc !'= 4) {
Tcl_WrongNumArgs (interp, 1, objv, "channelHandle direction value") ;
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l], &chanConfig) != TCL_OK) {
return TCL_ERROR ;

if (chanConfig->isInitialized == 0) {
SetInitializationError (interp) ;
return TCL_ERROR ;

dir = 0 ;
if (GetDirectionBitMask (interp, ob3jv[2], &dir) != TCL_OK) { /+ @ x/
return TCL_ERROR ;

lvalue = 0 ;
if (GetPinValueBitMask (interp, objvI[3], &lvalue) != TCL_OK) {
return TCL_ERROR ;

ifdef TEST
status = 0 ;
else

The mpssespi Package

45/59

status = FT_WriteGPIO (chanConfig->handle, dir, lvalue) ;

endif /+ TEST =/
result = SetStatusResult (interp, status) ;
if (result == TCL_OK) {

Tcl_ResetResult (interp) ;

return result ;

<<static data>>=
static char const writeGPIOCmdName[] = "::mpssespi::writeGPIO"
static char const writeGPIOName[] = "writeGPIO"

<<command creation>>=
Tcl_CreateObjCommand (interp, writeGPIOCmdName, WriteGPIOProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, writeGPIOName, 0) !'= TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj (writeGPIOName, -1),
Tcl_NewStringObj (writeGPIOCmdName, -1)) != TCL_OK) {
goto errorout ;

o The function for handling I/O pin directions and values were also used for setting configuration information.

<<writeGPIO tests>>=
test writeGPIO-1.0 {
output GPIO values
} —setup {
set handle [::mpssespi openChannel 0]
} —cleanup {
::mpssespi closeChannel $handle
} -body {
::mpssespi writeGPIO $handle {0 out 2 out} {0 true 2 false}
} —result {}

Read GPIO

The is a corresponding function to read the value of the I/O pins

::mpssespi readGPIO handle

handle
A mpssespi channel handle as returned from a successful call to the openChannel command.

corresponding to logic low (false) and logic high (true).

The readGPIO command reads and state of the eight GPIO lines associated with the SPI channel. The return value of
this command is a dictionary with keys "0", "1" ... "7" corresponding to the 8 GPIO lines and with values that are boolean

<<command procedures>>=

static int

ReadGPIOProc (
ClientData clientData,
Tcl_Interp xinterp,
int objc,

The mpssespi Package

46 /59

Tcl_Obj xconst objv[])

MPSSEPkgInfo xpkgInfo = (MPSSEPkgInfo *)clientData ;
MPSSEChanConfig xchanConfig ;

uint8 gpiovalue ;

Tcl_Obj =xvalueDict ;

FT_STATUS status ;

int result ;

if (objc !'= 2) {
Tcl_WrongNumArgs (interp, 1, objv, "channelHandle")
return TCL_ERROR ;

if (LookUpHandle (interp, pkgInfo, objv[l], &chanConfig) != TCL_OK)
return TCL_ERROR ;

if (chanConfig->isInitialized == 0) {
SetInitializationError (interp) ;
return TCL_ERROR ;

ifdef TEST
status = 0 ;
gpiovalue = 0xa5 ;

else

status = FT_ReadGPIO (chanConfig->handle, &gpiovalue) ;
endif /+ TEST «/
result = SetStatusResult (interp, status) ;
if (result != TCL_OK) {
return TCL_ERROR ;

if (GetPinValueDict (interp, gpiovalue, &valueDict) != TCL_OK) {
return TCL_ERROR ;

Tcl_SetObjResult (interp, valueDict) ;
return TCL_OK ;

<<static data>>=
static char const readGPIOCmdName[] = "::mpssespi::readGPIO"
static char const readGPIOName[] = "readGPIO"

<<command creation>>=
Tcl_CreateObjCommand (interp, readGPIOCmdName, ReadGPIOProc,
clientData, NULL) ;
if (Tcl_Export (interp, ns, readGPIOName, 0) !'= TCL_OK) {
goto errorout ;
}
if (Tcl_DictObjPut (interp, mapObj, Tcl_NewStringObj(readGPIOName, -1),
Tcl_NewStringObij (readGPIOCmdName, -1)) != TCL_OK) {
goto errorout ;

<<readGPIO tests>>=
test readGPIO-1.0 {
input GPIO values
} —setup {
set handle [::mpssespi openChannel 0]

The mpssespi Package 47 /59

} —cleanup {
::mpssespil closeChannel S$handle

} —body {
set gpios [::mpssespi readGPIO S$handle]
dict get $gpios 7

} —result {1}

Error Handling

All the handling of errors returned directly from 11 bMPSSE~-SP1T is factored into the Set StatusResult () function.

<<utility functions>>=

static int

SetStatusResult (
Tcl_Interp xinterp,
FT_STATUS status)

static struct ftErrorMap {
char const *resultString ;
char const *errorCodeString ;
} errorMap[] = {
{"Ok", "FT_OK"}, /* place holder =/
{"invalid handle", "FT_ INVALID_ HANDLE"},
{"device not found", "FT_DEVICE_NOT_FOUND"},
{"device not opened", "FT_DEVICE_NOT_OPENED"},
{"I/O error", "FT_IO_ERROR"},
{"insufficient resources", "FT_INSUFFICIENT_RESOURCES"},
{"invalid parameter", "FT_INVALID_ PARAMETER"},
{"invalid baud rate", "FT_ INVALID BAUD_RATE"},
{"device not opened for erase", "FT_DEVICE_NOT_OPENED_FOR_ERASE"},
{"device not opened for writing", "FT_DEVICE_NOT_OPENED_FOR_WRITE"},
{"failed to write to device", "FT_FAILED_TO WRITE_DEVICE"},
{"failed to read from device", "FT_EEPROM_READ_FAILED"},
{"EEPROM write failed", "FT_EEPROM_WRITE_FAILED"},
{"EEPROM erase failed", "FT_EEPROM ERASE_FAILED"},
{"EEPROM not present", "FT_EEPROM_NOT_PRESENT"},
{"EEPROM not programmed", "FT_EEPROM_NOT_PROGRAMMED"},
{"invalid arguments", "FT_INVALID_ARGS"},
{"not supported", "FT_NOT_SUPPORTED"},
{"other error", "FT_OTHER_ERROR"},

if (FT_SUCCESS (status)) {
return TCL_OK ;

Tcl_ResetResult (interp) ;

assert (status < COUNTOF (errorMap)) ;

if (status < COUNTOF
Tcl_AppendResult

Tcl_SetErrorCode
errorMap

errorMap)) {

interp, errorMap[status].resultString, NULL) ;
interp, "MPSSESPI", errorMap|[status].errorCodeString,
status] .resultString, NULL) ; /+ @ «/

} else {
Tcl _Obj *result = Tcl_GetObjResult (interp) ;
Tcl_AppendPrintfToObj (result, "unknown FT_STATUS value, \"&%d\"",
status) ;
Tcl_SetObjResult (interp, result) ;

The mpssespi Package 48 /59

}
return TCL_ERROR ;

o We add error code information that precisely defines the error and is programatically convenient.

Since we track the state of the channel initialization, we can emit an error message for those operations that require initialization
first.

<<utility functions>>=

static void

SetInitializationError (
Tcl_Interp xinterp)

static char const msg[] = "channel must be initialized first"
Tcl_SetObjResult (interp, Tcl_NewStringObj(msg, -1)) ;
Tcl_SetErrorCode (interp, "MPSSESPI", "UNINITIALIZED", msg, NULL) ;

Package Initialization

Dynamically loaded packages under Tcl follow a naming convention for the initialization functions. This enables the 1oad
command to construct the initialization invocation from the package name.

Initialization is also separated for safe interpreters. The sections below show that initialization.

Load Initialization

<<initialization>>=

DLLEXPORT /+ @ «/

int

Mpssespi_Init (
Tcl_Interp xinterp)

ClientData clientData ;

Tcl_Namespace #*ns ;

Tcl_Obj »mapObj ;

Tcl_Command cmdToken ;

if (Tcl_InitStubs (interp, TCL_VERSION, 0) == NULL) {
return TCL_ERROR ;

clientData = NewMPSSEPkgInfo (interp) ; /* @ x/

Init_1ibMPSSE () ;

<<namespace creation>>

<<command creation>>

<<ensemble creation>>

<<package configuration>>

Tcl_PkgProvide (interp, PACKAGE_NAME, PACKAGE_VERSION) ;
return TCL_OK ;

The mpssespi Package 49 /59

errorout:
Tcl_DecrRefCount (mapObij) ;
Tcl_DeleteNamespace (ns) ;
return TCL_ERROR ;

o Needed to build under Windows.

2] We create new package specific storage and pass it’s pointer as the clientData to each command procedure.

Creating the Package Namespace

The mpssespi package is an ensemble command with subcommands corresponding to the interfaces to 1ibMPSSE—-SPI. The
ensemble command is bound to the : :mpssespi namespace.

<<static data>>=
static char const mpssespi_ns_name[] = "::mpssespi"

<<namespace creation>>=

ns = Tcl_CreateNamespace (interp, mpssespi_ns_name, NULL, NULL) ;
mapObj = Tcl_NewDictObj() ; /+ @ x/
o We also obtain a dictionary object that is used to create the ensemble command mapping.

Once all the commands have been created and exported, we can create the ensemble command and install the command map.

<<ensemble creation>>=
cmdToken = Tcl_CreateEnsemble (interp, mpssespi_ns_name, ns, TCL_ENSEMBLE_PREFIX) ;
if (Tcl_SetEnsembleMappingDict (interp, cmdToken, mapObj) !'= TCL_OK) {

goto errorout ;

Unloading

Unloading is supported and we use this as a good place to call the library clean up function.

<<unloading>>=

DLLEXPORT int

Mpssespi_Unload (
Tcl_Interp xinterp)

Cleanup_libMPSSE () ;
return TCL_OK ;

Safe Interpreter Initialization

Loading this package into a safe interpreter is not supported. The initialization and unloading functions just return an error.

<<initialization>>=

DLLEXPORT int

Mpssespi_SafelInit (
Tcl_Interp xinterp)

return TCL_ERROR ;

The mpssespi Package 50/59

<<unloading>>=

DLLEXPORT

int

Mpssespi_SafeUnload (
Tcl_Interp xinterp)

return TCL_ERROR ;

Package Configuration

We also support embedding the package configuration in the package itself. This information will show up the namespace
command pkgconfig. The pkgconfig command has two subcommands, 1ist and get. This has its basis in TIP 59 and
provides a set of name / value pairs of package configuration in formation.

Here we support keys of pkgname, version and copyright.

<<static data>>=
static Tcl_Config mpssespi_config[] = {
{"pkgname", PACKAGE_NAME},
{"version", PACKAGE_VERSION},
{"copyright",
"This software is copyrighted 2014 by G. Andrew Mangogna.\
Terms and conditions for use are distributed with the source code."},
{NULL, NULL}

‘We must register the configuration information.

<<package configuration>>=
Tcl_RegisterConfig(interp, PACKAGE_NAME, mpssespi_config, "iso8859-1")

Source Organization

This document is a literate program. As you have seen it contains both description and source code to the package. The ultimate
source for both the PDF documentation and the “C” source code is an ordinary text file formatted as an asciidoc document. The
process of extracting the source code is conventionally called tangling. The tool used tangle this program is called, atangle,
and is freely available at the mrtools website. The PDF documentation is produced using asciidoc.

This document contains two primary roots, one for the package source and the other for the package tests.

Package Source

The “C” source for the package can be extracted from the root called, mpssespi.c.

<<mpssespi.c>>=
/ *
* DO NOT EDIT THIS FILE!
* THIS FILE IS AUTOMATICALLY EXTRACTED FROM A LITERATE PROGRAM SOURCE FILE.

This software is copyrighted 2014 by G. Andrew Mangogna. The following
terms apply to all files associated with the software unless explicitly
disclaimed in individual files.

The author hereby grants permission to use, copy, modify, distribute,
and license this software and its documentation for any purpose, provided

% ok X % X %

http://repos.modelrealization.com/cgi-bin/fossil/mrtools
http://www.methods.co.nz/asciidoc

The mpssespi Package

51/59

that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided that the
new terms are clearly indicated on the first page of each file where

they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only "Restricted Rights"
in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
are acquiring the software on behalf of the Department of Defense,
the software shall be classified as "Commercial Computer Software"
and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing,
the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the
terms specified in this license.

*++
MODULE :
mpssespi —— Tcl interface to FTDI MPSSE SPI Library

ABSTRACT:
This file contains the "C" source for a Tcl interface to 1ibMPSSE,
the FTIDI USB to serial converter chip that is capable of emulating
a SPI bus.

* Kk ——

*

/ *

*

/

INCLUDE FILES
/

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

/*
*
*
*

*

We must include 1ibMPSSE_spi.h first as it includes WinTypes.h.
There is a conflict in WinTypes.h and tcl.h over the VOID macro and
typedef. Ugh!

/

#include "1ibMPSSE_spi.h"
#include "tcl.h"

/ *

*

MACRO DEFINITIONS
/

The mpssespi Package 52 /59

#ifndef COUNTOF
define COUNTOF (a) (sizeof (a) / sizeof(a[0]))
#endif /* COUNTOF «*/

<<macro definitions>>

/ *
* TYPE DEFINITIONS
*/

<<type definitions>>

/ *
* EXTERNAL FUNCTION REFERENCES
x/

/ *
* EXTERNAL INLINE FUNCTION REFERENCES
*/

/ *
* STATIC FUNCTION DECLARATIONS
x/

/ *
* EXTERNAL DATA REFERENCES
*/

/ *
* EXTERNAL DATA DEFINITIONS
x/

/ *
* STATIC DATA DEFINITIONS
*/

<<static data>>

/ *
* STATIC FUNCTION DEFINITIONS
*/
<<forward utility functions>>
<<utility functions>>
<<command procedures>>

/ *
* EXTERNAL FUNCTION DEFINITIONS
*/

<<initialization>>

<<unloading>>

Test Source

A tcltest source file can be extracted starting at the mpssespi.test root.

<<mpssespi.test>>=

#!/usr/bin/env tclsh

#

DO NOT EDIT THIS FILE!

THIS FILE IS AUTOMATICALLY EXTRACTED FROM A LITERATE PROGRAM SOURCE FILE.
#

The mpssespi Package 53 /59

H= o S o K S S S S S S S S S S S S S Sk S SR S S S S S S Sk 3 S S S S S S S Sk S S S S S S H S S S T S S S R

This software is copyrighted 2014 by G. Andrew Mangogna.
The following terms apply to all files associated with the software unless
explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute,

and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided that the

new terms are clearly indicated on the first page of each file where

they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,

OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only "Restricted Rights"
in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
are acquiring the software on behalf of the Department of Defense,
the software shall be classified as "Commercial Computer Software"
and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing,
the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the
terms specified in this license.

*++

PROJECT:
mpssespi

MODULE :
mpssespi.test —— unit tests for mpssespi package

ABSTRACT:
This file contains a set of tcltests to exercise the mpssespi package.
These tests assume that the package code was built with the "C"
preprocessor symbol "TEST" defined.

e

package require Tcl 8.6
package require cmdline
package require logger
package require platform

#

Load the package

set auto_path [linsert S$auto_path 0\

[file normalize [file join .. [platform::identify]]]]

The mpssespi Package 54 /59

package forget mpssespi
package require mpssespi

set optlist {
{level.arg warn {Log debug level}}
}

array set options [::cmdline::getKnownOptions argv S$optlist]
::logger::setlevel Soptions (level)

package require tcltest
tcltest::configure {x}S$argv

namespace eval ::mpssespi::test {
::logger::initNamespace [namespace current] $::options(level)

namespace import ::tcltest::x

log::info "Testing mpssespi version [package require mpssespi]"
log::notice "These tests assume the package was built with TEST defined"

<<getNumChannels tests>>
<<getChannelInfo tests>>
<<openChannel tests>>
<<closeChannel tests>>
<<initChannel tests>>
<<getChannelConfig tests>>
<<setChannelConfig tests>>
<<readChannel tests>>
<<writeChannel tests>>
<<readWriteChannel tests>>
<<isBusy tests>>
<<changeCS tests>>
<<writeGPIO tests>>
<<readGPIO tests>>

cleanupTests

namespace delete ::mpssespi::test

Example

The example given below is a transliteration of the example given in the FTDI manual for 1ibMPSSE-SPI.

Note

This code has not been tested. | don’'t have access to this particular piece of hardware in a configuration where testing it is
possible. However, | have run the example against a SPI bus analyzer and have examined the traces and compared them to
the data sheet for the EEPROM part.

A close examination of the “C” code in the FTDI documentation shows that it is not a shining example of “C” coding. The
example has been adapted from other uses and some functions are called with arguments that are not used. However, we strive
to duplicate the intent of the example below.

First, we must “require” the package.

<<example.tcl>>=

The mpssespi Package 55/59

#!/usr/bin/env tclsh

package require mpssespi

The example defines a couple of functions to read and write the EEPROM. Despite the name of “read_byte”, it actually reads
two bytes. This is because the MicroSemi 94L.C56B EEPROM actually transfers data in 16 bit quantities.

Commands codes for the chip that include an address are 3 bits long followed by an 8 bit address. We define a proc to do the
bit twiddling.

<<example.tcl>>=
proc fmtcommand {cmd address} {

set data [expr {((Scmd & 7) << 5) | (($address >> 3) & 0x1f)}] ; 4+ O
lappend data [expr {($Saddress & 0x07) << 5}] ; + ©
return [binary format cx $data] ; # (3

o The first byte is the 3-bit command and the 5 most significant bits of the address.

(2] The second byte is the remaining 3 least significant bits of the address.

(3] The data that is actually transmitted on the SPI bus is, of course, binary, not Tcl number strings.
<<example.tcl>>=

proc read_byte {spichan address} {
mpssespl writeChannel $spichan [fmtcommand 6 $address]\

{xferunits bits csdisable false} 12 ; # O
return [mpssespi readChannel S$spichan 2 {csenable false}] PR 2
}
o The whole SPI bus transaction consists of clocking out the write command and address and then reading 16 bits of data.

We will accomplish this in two channel calls. So we don’t want chip select to be deasserted in between. Also note that we
are actually transferring 12 bits. The clocking of the extra bit on a read command effectively discards a dummy bit that
the device produces. That just seems to be the way the device works according to the datasheet.

(2] This time, we don’t need to enable chip select since we did not disable it on the last command. Since the default channel
configuration is to disable chip select at the end of each channel operation, when the read is finished we will actually
disable chip select as is required. When transfer options are supplied with a channel read or write command they only
affect that particular transfer and the changes are applied against the current channel configuration.

Writing a byte to the EEPROM is more complicated. You must execute a write enable command and, to be safe, execute a write
disable command after data is written. The example does this for every byte. A better design might recognize that an entire
stream of bytes can be written once writes are enabled. Again we follow the FTDI example here.

<<example.tcl>>=

proc write_byte {spichan address data} {
set wen [binary format cx {0x9f Oxff}] ; # O
mpssespl writeChannel $spichan $wen {xferunits bits} 11

mpssespi writeChannel $spichan [fmtcommand 5 $address]\
{xferunits bits csdisable false} 11
mpssespl writeChannel $spichan $data {csenable false} ; + O

mpssespi writeChannel $spichan {} {xferunits bits csdisable false} 0 ; # (3
mpssespl writeChannel $spichan {} {xferunits bits csenable false} 0

set wen [binary format cx {0x87 0Oxff}] ; + O
mpssespl writeChannel $spichan $wen {xferunits bits} 11

The mpssespi Package 56 /59

(1] The write enable command is 5 bits, 10011, with don’t care (so we set them to 1) for the remaining 6 bits of the 11 bit
transaction.
2] The write bus transaction is the 11 bits containing the command and address, followed by two bytes of data. Once again

we use two channel commands, making sure not to disable chip select in between.

(2] Here the example gets a little vague. There is conditional compilation that is marked as #if 1 and so we follow that
sequence in the code. The chip uses its data out line to indicate the completion status of the write operation. It is necessary
to enable chip select and then disable it. One might try the polling data out line using the 1 sBusy command and this is
also referenced in the example.

o Finally, we issue the write disable command. Write disable is 5 bits, 10000, with don’t care for the other 6 bits of the bus
transaction.

Finally, the main program of the example just writes and then reads back 16 address locations.

<<example.tcl>>=
proc main {} {
set numChannels [mpssespi getNumChannels]

puts "Number of available SPI channels = $numChannels"
for {set chanNum 0} {S$SchanNum < $numChannels} {incr chanNum} {

set info [mpssespi getChannelInfo $chanNum]
puts "Information on channel number S$chanNum:"

puts " Type=[format 0x%x [dict get $info type]]"

puts " Opened=[dict get $info opened]"

puts " Hispeed=[dict get $info hispeed]"

puts " Id (vendor)=[format %04x [dict get $info idvendor]]"
puts " Id (product)=[format %04x [dict get $info idproduct]]"
puts " Location Id=[dict get $info locid]"

puts " Serial Number=[dict get $info serialnumber]"

puts " Description=\"[dict get $info description]\""

set spichan [mpssespi openChannel 0]
mpssespi setChannelConfig $spichan {
clockrate 5000
latencytimer 255
mode 0
csline DBUS3
csactive high
}

mpssespi initChannel S$spichan ; 4+ O

for {set address 0} {$Saddress < 16} {incr address} {
set data [expr {$address + 3}]
puts "writing address S$address, data = $data"
set bindata [binary format S $data] ; + O
write_byte $spichan $address $bindata

for {set address 0} {S$Saddress < 16} {incr address} {
set bindata [read_byte $spichan $address]
binary scan $bindata Su $bindata data ; # ©
puts "reading address $address, data = $data"

mpssespil closeChannel $spichan

Run the example

The mpssespi Package 57 /59

main

o We copy the configuration information from the example. Note this chip uses an active high chip select.
(2] The SPI bus deals in raw binary data. The contents of the data variable, like all things in Tcl, is represented as a string.

(3] Conversely, the data read from the SPI bus is binary and needs to be scanned to obtain a Tcl string representation.

This example is very simple, as most examples are. It also follows the design flow of the original “C” program from FTDI. My
suggestion for users of this package is to create chip specific packages that deal with the commands and transaction as required for
the specific chip. That chip specific package would then use the mpssespi package to perform the actual SPI bus transactions.
It’s worth sorting through the chip data sheet and encoding the particular way a chip works into a package so that you can get on
with other matters.

Special Linux Considerations

Most modern version of Linux use udev as the means of handling hot plugged devices. Associated with udev are a set of rules
that determine how devices are handled. If you are running a version of Linux that does not use udev then this section will not
be of any help to you (and you really should be running something more current).

By default when an FTDI device is plugged in, the kernel will load the usbserial module and the ftdi_sio module. The
implicit assumption is that you are going to treat these devices as ordinary serial devices and device special files of the form
ttyUSB? are created. Unfortunately, this is not what you want to happen if you intend to run the mpssespi package. The best
fix I have been able to find is to manually unload the kernel modules by executing the following commands.

sudo rmmod ftdi_sio
sudo rmmod usbserial

This will cause the kernel to unload the driver and release the device so that it becomes available for direct access as needed
by 1ibMPSSE-SPI. I think is should be possible to prevent the drivers from being loaded using udev rules, but have been
unsuccessful in accomplishing that. Unloading the ftdi_sio and usbserial kernel modules is a rather draconian approach
as it will also disable other FTDI ports that you may wish to have operative.

Another issue that arises is the permissions given to the device special file that is created when the FTDI device is hot plugged.
The usual default udev rules create the file as owned by root and there is no write permission for other users. The best solution
for this is to install a udev rule. Below is an example rule. This rule matches a particular FTDI device with a known serial
number and makes sure the mode of the device special file has write permissions for everyone. Typically this would be installed
inthe /etc/udev/rules.d directory.

<<libmpsse-spi.rules>>=
ACTION=="add", SUBSYSTEM=="usb", ATTR{idVendor}=="0403", ATTR{idProduct}=="6010", ATTR{ <«
serial}=="FTWSQTDL", MODE="0666"

Udev rules are very powerful and very flexible. You will have to compose udev rules that match your particular usage pattern.
For example, leaving out the ATTR{serial}==. .., clause will cause the rule to match all FTDI devices. You can consult the
many posting on the Internet about writing udev rules. The example above is just to get you started thinking about what would
be needed to make the file permissions work smoothly in your particular configuration.

Another problem you may have when loading the package is occurs if the D2XX library is not found. In that case, there will be a
core dump with the following message:

../../Infra/src/ftdi_infra.c:243:Init_1ibMPSSE () : NULL expression encountered

It may be necessary to set the value of the LD_ LIBRARY_PATH environment variable to include the directory where the driver
is installed. FTDI installation instruction place the driver in /usr/local/lib.

The mpssespi Package 58 /59

Known Problems

As of version 1.0, it seems that invoking the readWriteChannel command using transfer units of bytes does not function
properly. The SPI bus transactions are not correct. However, using the bit s transfer unit works correctly. This problem requires
further investigation.

Building the Package

This package comes with TEA compliant build files. However, the FTDI 1ibMPSSE-SPT library is not distributed with this
package source. To build the package you must obtain the distribution of the library files from FTDI. As of this writing, the
1ibMPSSE-SPT library is at version 0.3, released 12 Dec 2011. To run the package it is necessary to have the FTDI D2 XX
driver properly installed on your system.

The 1ibMPSSE-SPI zip file may be placed anywhere. The configure command to prepare the build accepts a ——with-
libmpsse argument to specify the path to the library files.

The following is the configure command used to build the linux version of the package. This command assumes that 1ibMP
SSE-SPI.zip was extracted into the same directory as the code for the Tcl package When the 1ibMPSSE-SPI.zip fileis
extracted, it creates a directory named, Release-SPI.

$ mkdir linux

$ cd linux

$../configure —--with-tcl=<path to your Tcl installation>\
—-with-libmpsse=../Release-SPI

After configuring the software, make may be invoked to build it.

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-SPI/libMPSSE-SPI.zip
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Drivers/D2XX.htm

The mpssespi Package

59/59

Index

C

changeCs, 42

ChangeCSProc, 42

closeChannel, 28

commands
changeCS, 42
closeChannel, 28
getChannelConfig, 14
getChannellnfo, 7
getNumChannels, 6
initChannel, 12
isBusy, 40
openChannel, 11
readChannel, 30
readGPIO, 45
readWriteChannel, 38
setChannelConfig, 20
writeChannel, 34
writeGPIO, 43

ConvertXferUnitsToBytes, 34

D
DeleteHandleMapping, 5
DeleteMPSSEPkgInfo, 3

F
functions
ChangeCSProc, 42

ConvertXferUnitsToBytes, 34

DeleteHandleMapping, 5
DeleteMPSSEPkglInfo, 3

GetChannelConfigProc, 15

GetDirectionBitMask, 27
GetDirectionDict, 19
GetNumChannelsProc, 6
GetPinValueDict, 20
InitChannelProc, 13
IsBusyProc, 41
LookUpHandle, 5
Mpssespi_Init, 48
Mpssespi_Safelnit, 49
Mpssespi_Unload, 49
NewHandleMapping, 3
NewMPSSEPkgInfo, 2
OpenChannelProc, 11
ReadGPIOProc, 45

ReadWriteChannelProc, 38

SetStatusResult, 47
SetTransferOptions, 33
VerifyOutputLength, 37
WriteChannelProc, 35
WriteGPIOProc, 44

getChannelConfig, 14

GetChannelConfigProc, 15

getChannellnfo, 7
GetDirectionBitMask, 27
GetDirectionDict, 19
getNumChannels, 6
GetNumChannelsProc, 6
GetPinValueDict, 20

I

initChannel, 12
InitChannelProc, 13
isBusy, 40
IsBusyProc, 41

L
LookUpHandle, 5

M

Mpssespi_Init, 48
Mpssespi_Safelnit, 49
Mpssespi_Unload, 49

N
NewHandleMapping, 3
NewMPSSEPkglInfo, 2

(0)
openChannel, 11
OpenChannelProc, 11

R

readChannel, 30
readGPIO, 45
ReadGPIOProc, 45
readWriteChannel, 38

ReadWriteChannelProc, 38

S

setChannelConfig, 20
SetStatusResult, 47
SetTransferOptions, 33

\Y%
VerifyOutputLength, 37

w

writeChannel, 34
WriteChannelProc, 35
writeGPIO, 43
WriteGPIOProc, 44

	Introduction
	Design Concepts
	Package Interface Considerations

	Package Data
	Package Commands
	Get Number of Channels
	Get Channel Info
	Open Channel
	Init Channel
	Get Channel Configuration
	Set Channel Configuration
	Close Channel
	Read Channel
	Write Channel
	Read/Write Channel
	Is Busy
	Change CS
	Write GPIO
	Read GPIO

	Error Handling
	Package Initialization
	Load Initialization
	Creating the Package Namespace
	Unloading

	Safe Interpreter Initialization
	Package Configuration

	Source Organization
	Package Source
	Test Source

	Example
	Special Linux Considerations
	Known Problems
	Building the Package
	Index

